标签:分享 lines -128 parameter wan == 生成 cte shu
主要从几个方面来进行说明吧
- 加快transfer的速度
- 让transfer的效果看起来更加visual-pleasing
- 其他的一些方面
- 用GAN来做
谈谈图像的Style Transfer(一)
这里写了 Neural style以及fast neural style。
在超越fast style transfer—-任意风格图和内容图0.1秒出结果已经可以将转换做到实时。这篇的一个主要的问题是耗费的大部分时间是在提取隐藏层的patch上。
下面介绍的论文都秉承任意风格图一次前向直接出结果
这个在ICLR 2017发表的文章,核心思想:many styles probably share some degree of computation.就是说,虽然我们可以用fast neural style根据很多不同的style训练不同的模型,但是这些模型的所有卷积层的权值都是一样的!
看原文比较容易:
we found a very surprising fact about the role of normalization in style transfer networks:
。
to model a style, it is sufficient to specialize scaling and shifting parameters after normalization to each specific style.
In other words, all convolutional weights of a style transfer network can be shared across many styles,
and it is sufficient to tune parameters for an affine transformation after normalization for each style.
他们把这个方法称为condition instance normalization
。
论文
这篇的话主要的思想是:加入了 adaptive instance normalization(AdaIN)层,主要是让生成图像特征与画的特征在 均值和方差上进行尽量相似。其实就是换了一种约束。原版的neural style是用二阶统计信息(协方差,用Gram矩阵)来进行匹配风格,但是也有用其他的,比如MRF loss(ombining markov random fields and convolutional neural networks for image synthesis.), Adversarial loss(C. Li and M. Wand. Precomputed real-time texture synthesis with markovian generative adversarial networks. In ECCV,2016), 梯度直方图(P. Wilmot, E. Risser, and C. Barnes. Stable and controllable neural texture synthesis and style transfer using histogram losses. arXiv preprint arXiv:1701.08893 , 2017), MMD损失(P. Wilmot, E. Risser, and C. Barnes. Stable and controllable neural texture synthesis and style transfer using histogram losses. arXiv preprint arXiv:1701.08893, 2017)等等吧。然后貌似均值和方差没有人用啊,所以他们就用了。
先说一下,Instance Normalization不同于不同的BN,它是每个例子的每个通道进行normalization的。
代码:https://github.com/xunhuang1995/AdaIN-style
这篇主要是从三个方面着手
在以前的风格转换中,生成图的颜色都会最终变成style图的颜色,但是很多时候我们并不希望这样。其中一种方法是,将RGB转换成YIQ,只在Y上进行风格转换,因为I和Q通道主要是保存了颜色信息。
主要是加入R个引导通道。
唯一的区别是
从最初的CNN做style transfer一年多,style transfer出来的都是“画”,并不是照片。直到17年3月份,Cornell和Adobe的这篇论文。
可以看到,这种风格转换可以使得生成图几乎看不出任何“画”的细节,如同照片一样。所谓“画”就是包含局部的扭曲,这篇论文成功抑制了这种扭曲,将style transfer变成颜色域的仿射变换。
可以看到,比如第四行,最右侧被子颜色成功变成第二幅的,而前两种方法都没法很好的进行颜色转换,并且前两种方法扭曲明显,比如墙壁的垂直边缘扭曲很明显,而这篇论文的方法就几乎没有这种现象。
他们还比较了其他一些”spatially-variant color transfer”的方法。效果明显更好。
他们主要在传统损失函数中加入了一个”Photorealism regularization”项。由于是local color stransfer,所以他们采用 Matting Laplacian of Levin的方法,这种方法将灰度模板用RGB通道的局部仿射组合来表示。所以
此外,由于Gram矩阵自身是计算整幅图的协方差,并不是局部的,所以就先根据输入图像生成多个masks,然后将该图像标上一系列标签(天空、楼房、水等等),然后把这些模板作为额外通道直接concatenate上去就行。
代码:https://github.com/luanfujun/deep-photo-styletransfer
顺带说一句,3月份公开的论文,现在才过了2个月不到,竟然已经差不多8800多颗star了。。大家挺喜欢这个工作的。。
他们发现Gram矩阵用于style transfer的不稳定性,即两种完全不同的分布其Gram矩阵可能是一样的。
从而提出加入直方图信息来强化约束。用于纹理生成时可以生成更加符合参考图的纹理。
以前都是整幅图stransfer的,然后他们想只对一幅图的单个物体进行stransfer,比如下面这幅图是电视剧Son of Zorn的剧照,设定是一个卡通人物生活在真实世界。他们还说这种技术可能在增强现实起作用,比如Pokemon go.
暂时不想写了,有空再写吧,反正也没人看。
代码:Torch版本(论文原版):https://github.com/junyanz/CycleGAN
Pytorch版本(仍旧是作者实现的):https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
高优先级
低优先级
标签:分享 lines -128 parameter wan == 生成 cte shu
原文地址:http://blog.csdn.net/hungryof/article/details/71512406