标签:dev mod 学习 dom method 方法 sem com rand
集成学习里面有两大派:Bagging和Boosting,每一派都有其代表性算法,这里给出一个大纲。
先来说下Bagging和Boosting之间的区别:bagging methods work best with strong and complex models (e.g., fully developed decision trees), in contrast with boosting methods which usually work best with weak models (e.g., shallow decision trees).
在说下不同Bagging方法之间的区别:有些子样本是子集,有些子样本是特征。
Bagging-Classifier和Regressor
Bagging
RandomForest
Boosting-Classifier和Regressor
AdaBoost
GradientBoosting
标签:dev mod 学习 dom method 方法 sem com rand
原文地址:http://www.cnblogs.com/sylz/p/6858205.html