标签:text 有用 函数 span 下标 记忆力 比较 omega str
模板题:
给定$n = 2^k$和两个序列$A_{0..n-1}$, $B_{0..n-1}$,求
$$C_i = \sum_{j \oplus k = i} A_j B_k$$
其中$\oplus$是某一满足交换律的位运算,要求复杂度$O(nlogn)$。
快速沃尔什变换:
这是什么东西?有用吗?请参阅SDOI2017r2d1-cut。
看到这个大家是不是立刻想到了快速傅里叶变换?
$$C_i = \sum_{j + k = i} A_j B_k$$
我们来想想离散傅里叶变换的本质。
$$\begin{aligned}& DFT(A)_i \\
&= A(\omega_n^i)\\
&=\sum_{j = 1}^n A_j * (\omega_n^i)^j\end{aligned}$$
令$f(n, i, j) = (\omega_n^i)^j$,则
$$DFT(A)_i = \sum_{j = 1}^n A_j f(n, i, j)$$
它要满足$DFT(A)_i * DFT(B)_i = DFT(C)_i$,即
$$(\sum_{j = 1}^n A_j f(n, i, j))(\sum_{k = 1}^n B_k f(n, i, k))=\sum_{l = 1}^n C_l f(n, i, l)$$
$$\sum_{j = 1}^n \sum_{k = 1}^n A_j B_k f(n, i, j) f(n, i, k))=\sum_{l = 1}^n (\sum_{a+b=l} A_a B_b) f(n, i, l)$$
这时我们发现左右分别有$n^2$项,令对应项系数相等,得
$$f(n, i, j)f(n, i, k) = f(n, i, j + k)$$
只要任意一个可以进行逆变换且满足上述条件的$f$都可以。
现在我们把上面的$+$都改成$\oplus$,就是离散沃尔什变换即
$$DWT(A)_i = \sum_{j = 1}^n A_j f(n, i, j)$$
$$f(n, i, j)f(n, i, k) = f(n, i, j \oplus k)$$
怎么样,是不是云里雾里顿开茅塞?
然而我们还需要变快,所以快速傅里叶变换采用
$$f(n, i, j) = (\omega_n^i)^j$$
那它有什么优美的性质呢?
我们发现, 由于有折半引理,$f(n, i, j)$和$f(n, i+n/2, j)$可以同时从$f(n/2,i,j)$得来。
那么,从感性的角度,既然$\oplus$是一个位运算,那么应该更容易找到一个跟位运算有关的$f$,这样就自然有类似折半引理的东西使得我们可以做到上述事情。
例如,当$\oplus$是位与时,可以取$f(i, j) = [i \& j = i]$, 即$j$的二进制完全包含在$i$的二进制里时为1,否则为0。
当$\oplus$是位异或时, 可取$f(i, j) = (-1)^{count(i \& j)}$,其中$count(x)$表示$x$的二进制表示中1的个数。
逆变换:
逆变换看上去好难啊。。。
其实逆变换还是比较简单的。因为既然$f$跟位运算有关,我就只需要考虑某一位就好了。
例如$\oplus$是位异或时我考虑$n=2,A=(a_0, a_1)$,
那么$DWT(A) = (da_0 = a_0 + a_1, da_1 = a_0 - a_1)$
我只需要解一个二元一次方程(把$da_0, da_1$作为常数, $a_0, a_1$作为变量)就可以解出$a_0, a_1$了。
没了。
关于$f$函数的构造:
$f$函数怎么构造。。。和逆变换的方法差不多啊。。。只需要看$n=2$的情况就行(实际上一般就是$-1$的几次幂,或者$0, 1, -1$)
如果记忆力好可以把所有都背下来,反正满足交换律的位运算只有8个。。。
列一些出来吧。。。(下列$f$函数均将第一个参数$n$省略, $[expr]$在布尔表达式$expr$为真时为1, 否则为假)
$\oplus$为位与: $f(i, j) = [j \& i = i]$.
$\oplus$为位或: $f(i, j) = [j \& i = j]$.
$\oplus$为位异或: $f(i, j) = (-1)^{count(i \& j)}$.
$\oplus$为位与非,位或非的时候把三个数组的下标都取反就对应位或和位与。
$\oplus$为同或时直接求位异或卷积再把$C$的下标取反就行了。
吐槽:
明明可以感性的理解我偏要说这么多。。。
只是因为闲的慌。。。
当然是要帮助大家更好的理解FWT。
至于为什么要满足交换律。。。我才不会告诉你我还没有搞出不满足怎么做。
有同学说FWT难以感性理解。。。我也不知道如何感性理解。。。
代码嘛。。。直接拿FFT改一改就好了。。。
Fast Walsh-Hadamard Transform——快速沃尔什变换
标签:text 有用 函数 span 下标 记忆力 比较 omega str
原文地址:http://www.cnblogs.com/y-clever/p/6875743.html