标签:计算方法
如何衡量数据点之间的相似或相异程度是聚类算法的基础问题,会直接影响聚类分析的效果,最直观的方法是使用距离函数或者相似性函数。
常见的相似或相异程度计算方法。
很多距离计算方法都可以归结为基于向量p范数的距离,即Minkowski distance。
dij=(sumsh=1|xihxjh|p)1/pdij=(sumh=1s|xihxjh|p)1/p
参数p = 2,Minkowski distance退化为Euclidean distance,使用Euclidean distance的聚类算法大多只能发现低维空间中呈超球分布的数据,并且对数据集中的噪声比较敏感。
dij=(sumsh=1|xihxjh|2)1/2dij=(sumh=1s|xihxjh|2)1/2
参数p = 1,Minkowski distance演变为City-block distance,City-block distance可以有效提高模糊聚类算法对噪声或者孤立点的鲁棒性。
dij=sumsh=1|xihxjh|dij=sumh=1s|xihxjh|
参数p = 无穷,Minkowski distance演变为Sup distance。
dij=maxh|xihxjh|dij=maxh|xihxjh|
sij=xTixj||xi||||xj||sij=xiTxj||xi||||xj||
Mahalanobis distance为原特征空间中的数据在线性投影空间欧式距离,使用Mahalanobis distance能够使得聚类算法成功发现数据集里成超椭球型分布的类簇,但是Mahalanobis distance会带来较大的计算量。
dij=(xixj)TS1(xixj)dij=(xixj)TS1(xixj)
Alternative distance对数据集里的噪声不敏感。
dij=1exp(β||xixj||2)dij=1exp(β||xixj||2)
dij=(sumsh=1wah|xihxjh|)1/2dij=(sumh=1swha|xihxjh|)1/2
代码,
import numpy as np a = np.array([1,2,3,4]) b = np.array([4,3,2,1])print aprint b#Euclidean distancedistEu = np.sqrt(np.sum((a-b)**2))print "Euclidean distance = ",distEu#City-block distancedistCb = np.sum(np.abs(a-b))print "City-block distance = ",distCb#Sup distancedistSup = max(np.abs(a-b))print "Sup distance = ",distSup#Cosine similaritycosineSimi = np.dot(a,b) / (np.sqrt(np.sum(a**2)) * np.sqrt(np.sum(b**2)))print "Cosine similarity = ",cosineSimi#Alternative distancebeta = 0.5distAlter = 1 - np.exp(-beta * np.sqrt(np.sum((a - b)**2)))print "Alternative distance = ",distAlter#Feature weighted distanceweigh = np.array([0.5,0.3,0.1,0.1]) distFea = np.sqrt(np.dot(weigh,np.abs(a-b)))print "Feature weighted distance = ",distFea
输出,
[1 2 3 4] [4 3 2 1]Euclidean distance = 4.472135955City-block distance = 8Sup distance = 3Cosine similarity = 0.666666666667Alternative distance = 0.89312207434Feature weighted distance = 1.48323969742
标签:计算方法
原文地址:http://jsw55667.blog.51cto.com/12917062/1927427