码迷,mamicode.com
首页 > 其他好文 > 详细

Numpy 新手教程(2)

时间:2017-05-20 11:08:47      阅读:201      评论:0      收藏:0      [点我收藏+]

标签:media   rgs   基本   art   eve   多维数组   previous   sea   迭代   

翻译自官方文档Tentative NumPy Tutorial,有删节。

基本操作

主要的算术运算符都能够应用于数组类型,结果为相应元素之间的运,返回值为一个新的数组。

>>> a = array( [20,30,40,50] )
>>> b = arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10*sin(a)
array([ 9.12945251, -9.88031624,  7.4511316 , -2.62374854])
>>> a<35
array([True, True, False, False], dtype=bool)</span>

乘法操作符 表示的也是元素乘法。假设须要矩阵乘法,能够使用dot函数或者生成一个matrix对象。 

>>> A = array( [[1,1],
...             [0,1]] )
>>> B = array( [[2,0],
...             [3,4]] )
>>> A*B                         # elementwise product
array([[2, 0],
       [0, 4]])
>>> dot(A,B)                    # matrix product
array([[5, 4],
       [3, 4]])
>>> a = ones((2,3), dtype=int)
>>> b = random.random((2,3))
>>> a *= 3
>>> a
array([[3, 3, 3],
       [3, 3, 3]])
>>> b += a
>>> b
array([[ 3.69092703,  3.8324276 ,  3.0114541 ],
       [ 3.18679111,  3.3039349 ,  3.37600289]])
>>> a += b                                  # b is converted to integer type
>>> a
array([[6, 6, 6],
       [6, 6, 6]])</span>

当两个不同元素类型的数组运算时,结果的元素类型为两者中更精确的那个。(类型提升)

>>> a = ones(3, dtype=int32)
>>> b = linspace(0,pi,3)
>>> b.dtype.name
‘float64‘
>>> c = a+b
>>> c
array([ 1.        ,  2.57079633,  4.14159265])
>>> c.dtype.name
‘float64‘
>>> d = exp(c*1j)
>>> d
array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
       -0.54030231-0.84147098j])
>>> d.dtype.name
‘complex128‘</span>

Array类型提供了很多内置的运算方法,比方。

>>> a = random.random((2,3))
>>> a
array([[ 0.6903007 ,  0.39168346,  0.16524769],
       [ 0.48819875,  0.77188505,  0.94792155]])
>>> a.sum()
3.4552372100521485
>>> a.min()
0.16524768654743593
>>> a.max()
0.9479215542670073</span>

默认情况下, 这些方法作用于整个 array,通过指定 axis,能够使其仅仅作用于某一个 axis : 

>>> b = arange(12).reshape(3,4)
>>> b
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>>
>>> b.sum(axis=0)                            # sum of each column
array([12, 15, 18, 21])
>>>
>>> b.min(axis=1)                            # min of each row
array([0, 4, 8])
>>>
>>> b.cumsum(axis=1)                         # cumulative sum along each row
array([[ 0,  1,  3,  6],
       [ 4,  9, 15, 22],
       [ 8, 17, 27, 38]])</span>

经常使用函数

NumPy 提供了很多经常使用函数,如sin, cos, and exp. 相同,这些函数作用于数组中每个元素,返回还有一个数组。

>>> B = arange(3)
>>> B
array([0, 1, 2])
>>> exp(B)
array([ 1.        ,  2.71828183,  7.3890561 ])
>>> sqrt(B)
array([ 0.        ,  1.        ,  1.41421356])
>>> C = array([2., -1., 4.])
>>> add(B, C)
array([ 2.,  0.,  6.])</span>

其它经常使用函数包含:

allalltrueanyapply along axisargmaxargminargsortaveragebincountceilclipconjconjugatecorrcoefcovcrosscumprodcumsumdiffdotfloorinnerinvlexsortmaxmaximummeanmedianminminimumnonzeroouterprodreroundsometruesortstdsumtracetransposevarvdotvectorizewhere


索引、切片、和迭代

list类似,数组能够通过下标索引某一个元素。也能够切片,能够用迭代器迭代。

>>> a = arange(10)**3
>>> a
array([  0,   1,   8,  27,  64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000    # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000
>>> a
array([-1000,     1, -1000,    27, -1000,   125,   216,   343,   512,   729])
>>> a[ : :-1]                                 # reversed a
array([  729,   512,   343,   216,   125, -1000,    27, -1000,     1, -1000])
>>> for i in a:
...         print i**(1/3.),
...
nan 1.0 nan 3.0 nan 5.0 6.0 7.0 8.0 9.0</span>

多维数组能够用tuple 来索引.  

>>> def f(x,y):
...         return 10*x+y
...
>>> b = fromfunction(f,(5,4),dtype=int)
>>> b
array([[ 0,  1,  2,  3],
       [10, 11, 12, 13],
       [20, 21, 22, 23],
       [30, 31, 32, 33],
       [40, 41, 42, 43]])
>>> b[2,3]
23
>>> b[0:5, 1]                       # each row in the second column of b
array([ 1, 11, 21, 31, 41])
>>> b[ : ,1]                        # equivalent to the previous example
array([ 1, 11, 21, 31, 41])
>>> b[1:3, : ]                      # each column in the second and third row of b
array([[10, 11, 12, 13],
       [20, 21, 22, 23]])
>>> b[-1]                                  # the last row. Equivalent to b[-1,:]
array([40, 41, 42, 43])</span>

省略号...表示那些列取完整的值,比方,假设rank = 5,那么 

  •  x[1,2,...] is equivalent to x[1,2,:,:,:], 
  •  x[...,3] to x[:,:,:,:,3] and 
  •  x[4,...,5,:] to x[4,:,:,5,:].

>>> c = array( [ [[  0,  1,  2],               # a 3D array (two stacked 2D arrays)
...               [ 10, 12, 13]],
...
...              [[100,101,102],
...               [110,112,113]] ] )
>>> c.shape
(2, 2, 3)
>>> c[1,...]                                   # same as c[1,:,:] or c[1]
array([[100, 101, 102],
       [110, 112, 113]])
>>> c[...,2]                                   # same as c[:,:,2]
array([[  2,  13],
       [102, 113]])

多维数组迭代时以第一个维度为迭代单位

>>> for row in b:
...         print row
...
[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]

假设我们想忽略维度。将多维数组当做一个大的一维数组也是能够的,以下是样例

>>> for element in b.flat:
...         print element,
...
0 1 2 3 10 11 12 13 20 21 22 23 30 31 32 33 40 41 42 43


Numpy 新手教程(2)

标签:media   rgs   基本   art   eve   多维数组   previous   sea   迭代   

原文地址:http://www.cnblogs.com/jzdwajue/p/6881522.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!