标签:media rgs 基本 art eve 多维数组 previous sea 迭代
翻译自官方文档Tentative NumPy Tutorial,有删节。
主要的算术运算符都能够应用于数组类型,结果为相应元素之间的运,返回值为一个新的数组。
>>> a = array( [20,30,40,50] ) >>> b = arange( 4 ) >>> b array([0, 1, 2, 3]) >>> c = a-b >>> c array([20, 29, 38, 47]) >>> b**2 array([0, 1, 4, 9]) >>> 10*sin(a) array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854]) >>> a<35 array([True, True, False, False], dtype=bool)</span>
乘法操作符 * 表示的也是元素乘法。假设须要矩阵乘法,能够使用dot函数或者生成一个matrix对象。
>>> A = array( [[1,1], ... [0,1]] ) >>> B = array( [[2,0], ... [3,4]] ) >>> A*B # elementwise product array([[2, 0], [0, 4]]) >>> dot(A,B) # matrix product array([[5, 4], [3, 4]]) >>> a = ones((2,3), dtype=int) >>> b = random.random((2,3)) >>> a *= 3 >>> a array([[3, 3, 3], [3, 3, 3]]) >>> b += a >>> b array([[ 3.69092703, 3.8324276 , 3.0114541 ], [ 3.18679111, 3.3039349 , 3.37600289]]) >>> a += b # b is converted to integer type >>> a array([[6, 6, 6], [6, 6, 6]])</span>
当两个不同元素类型的数组运算时,结果的元素类型为两者中更精确的那个。(类型提升)
>>> a = ones(3, dtype=int32) >>> b = linspace(0,pi,3) >>> b.dtype.name ‘float64‘ >>> c = a+b >>> c array([ 1. , 2.57079633, 4.14159265]) >>> c.dtype.name ‘float64‘ >>> d = exp(c*1j) >>> d array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j, -0.54030231-0.84147098j]) >>> d.dtype.name ‘complex128‘</span>
Array类型提供了很多内置的运算方法,比方。
>>> a = random.random((2,3)) >>> a array([[ 0.6903007 , 0.39168346, 0.16524769], [ 0.48819875, 0.77188505, 0.94792155]]) >>> a.sum() 3.4552372100521485 >>> a.min() 0.16524768654743593 >>> a.max() 0.9479215542670073</span>
默认情况下, 这些方法作用于整个 array,通过指定 axis,能够使其仅仅作用于某一个 axis :
>>> b = arange(12).reshape(3,4) >>> b array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> >>> b.sum(axis=0) # sum of each column array([12, 15, 18, 21]) >>> >>> b.min(axis=1) # min of each row array([0, 4, 8]) >>> >>> b.cumsum(axis=1) # cumulative sum along each row array([[ 0, 1, 3, 6], [ 4, 9, 15, 22], [ 8, 17, 27, 38]])</span>
NumPy 提供了很多经常使用函数,如sin, cos, and exp. 相同,这些函数作用于数组中每个元素,返回还有一个数组。
>>> B = arange(3) >>> B array([0, 1, 2]) >>> exp(B) array([ 1. , 2.71828183, 7.3890561 ]) >>> sqrt(B) array([ 0. , 1. , 1.41421356]) >>> C = array([2., -1., 4.]) >>> add(B, C) array([ 2., 0., 6.])</span>
其它经常使用函数包含:
all, alltrue, any, apply along axis, argmax, argmin, argsort, average, bincount, ceil, clip, conj, conjugate, corrcoef, cov, cross, cumprod, cumsum, diff, dot, floor, inner, inv, lexsort, max, maximum, mean, median, min, minimum, nonzero, outer, prod, re, round, sometrue, sort, std, sum, trace, transpose, var, vdot, vectorize, where
与list类似,数组能够通过下标索引某一个元素。也能够切片,能够用迭代器迭代。
>>> a = arange(10)**3 >>> a array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]) >>> a[2] 8 >>> a[2:5] array([ 8, 27, 64]) >>> a[:6:2] = -1000 # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000 >>> a array([-1000, 1, -1000, 27, -1000, 125, 216, 343, 512, 729]) >>> a[ : :-1] # reversed a array([ 729, 512, 343, 216, 125, -1000, 27, -1000, 1, -1000]) >>> for i in a: ... print i**(1/3.), ... nan 1.0 nan 3.0 nan 5.0 6.0 7.0 8.0 9.0</span>
多维数组能够用tuple 来索引.
>>> def f(x,y): ... return 10*x+y ... >>> b = fromfunction(f,(5,4),dtype=int) >>> b array([[ 0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33], [40, 41, 42, 43]]) >>> b[2,3] 23 >>> b[0:5, 1] # each row in the second column of b array([ 1, 11, 21, 31, 41]) >>> b[ : ,1] # equivalent to the previous example array([ 1, 11, 21, 31, 41]) >>> b[1:3, : ] # each column in the second and third row of b array([[10, 11, 12, 13], [20, 21, 22, 23]]) >>> b[-1] # the last row. Equivalent to b[-1,:] array([40, 41, 42, 43])</span>
省略号...表示那些列取完整的值,比方,假设x 的rank = 5,那么
>>> c = array( [ [[ 0, 1, 2], # a 3D array (two stacked 2D arrays) ... [ 10, 12, 13]], ... ... [[100,101,102], ... [110,112,113]] ] ) >>> c.shape (2, 2, 3) >>> c[1,...] # same as c[1,:,:] or c[1] array([[100, 101, 102], [110, 112, 113]]) >>> c[...,2] # same as c[:,:,2] array([[ 2, 13], [102, 113]])
多维数组迭代时以第一个维度为迭代单位:
>>> for row in b: ... print row ... [0 1 2 3] [10 11 12 13] [20 21 22 23] [30 31 32 33] [40 41 42 43]
假设我们想忽略维度。将多维数组当做一个大的一维数组也是能够的,以下是样例
>>> for element in b.flat: ... print element, ... 0 1 2 3 10 11 12 13 20 21 22 23 30 31 32 33 40 41 42 43
标签:media rgs 基本 art eve 多维数组 previous sea 迭代
原文地址:http://www.cnblogs.com/jzdwajue/p/6881522.html