标签:cut block lock 节点 namespace 割点 max names sizeof
题目链接:http://poj.org/problem?id=2117
题意:求删除一个点后,图中最多有多少个连通块。
题解:就是找一下割点,根节点的割点删掉后增加son-1(son为子树个数),非根节点删掉之后++
#include <iostream> #include <cstring> #include <cstdio> using namespace std; const int N = 1e4 + 10; const int M = 1e6 + 10; struct TnT { int v , next; bool cut; }edge[M]; int head[N] , e; int Low[N] , DFN[N] , Stack[N] , add_block[N]; bool Instack[N]; bool cut[N]; int Index , bridge , top; void init() { memset(head , -1 , sizeof(head)); e = 0; } void add(int u , int v) { edge[e].v = v , edge[e].next = head[u] ,edge[e].cut = false , head[u] = e++; } void Tarjan(int u , int pre) { int v; Low[u] = DFN[u] = ++Index; Stack[top++] = u; Instack[u] = true; int son = 0; for(int i = head[u] ; i != -1 ; i = edge[i].next) { v = edge[i].v; if(v == pre) continue; if(!DFN[v]) { son++; Tarjan(v , u); Low[u] = min(Low[u] , Low[v]); if(Low[v] > DFN[u]) { bridge++; edge[i].cut = true; edge[i^1].cut = true; } if(u != pre && Low[v] >= DFN[u]) { cut[u] = true; add_block[u]++; } } else if(Instack[v]) Low[u] = min(Low[u] , DFN[v]); } if(u == pre && son > 1) cut[u] = true; if(u == pre) add_block[u] = son - 1; Instack[u] = false; top--; } int main() { int p , c; while(~scanf("%d%d" , &p , &c)) { if(p == 0 && c == 0) break; init(); for(int i = 0 ; i < c ; i++) { int u , v; scanf("%d%d" , &u , &v); add(u , v); add(v , u); } memset(DFN , 0 , sizeof(DFN)); memset(Instack , false , sizeof(Instack)); memset(add_block , 0 , sizeof(add_block)); memset(cut , false , sizeof(cut)); int cnt = 0; Index = 0 , bridge = 0 , top = 0; for(int i = 0 ; i < p ; i++) { if(!DFN[i]) { Tarjan(i , i) , cnt++; } } int MAX = 0; for(int i = 0 ; i < p ; i++) MAX = max(MAX , cnt + add_block[i]); printf("%d\n" , MAX); } return 0; }
poj 2117 Electricity(tarjan求割点删掉之后的连通块数)
标签:cut block lock 节点 namespace 割点 max names sizeof
原文地址:http://www.cnblogs.com/TnT2333333/p/6881474.html