标签:游戏 strong 也会 题目 span pos 等于 class 答案
在概率问题中,假设跟着日常经验与感觉走。常常会得到错误的答案。以下“抽钻石”的故事非常可以说明这一点。
题目一:某天电视台举办了这种一个游戏节目。主持人首先拿出三个盒子。已知这三个盒子中有一个里面装的是钻石,另外两个里面装的是石头。游戏的规则是这种:參赛者先选择一个他觉得里面是钻石的盒子,但并不打开。这样主持人手里剩下的两个盒子中至少有一个里面装的是石头。然后,主持人(他知道每一个盒子里装的是什么)为了帮助选手排除一个盒子。他打开了手中两个盒子中的一个,里面装的是石头。
这时主持人让參赛者又一次选择,是坚持自己一開始的选择。还是改变主意。选择主持人手中剩下的那一个?參赛者假设终于选择的盒子中装的是钻石的话,參赛者就可以得到这一颗钻石。
假设你是參赛者,那么。你将怎样选择以使自己得到钻石的几率更大一些?
看过这道题,非常多人都会认为太简单了,可是。大家未必能给出正确的答案。好,先不必急于回答,请看题目二后再给出答案。
题目二:情景如题目一。仅仅是主持人并不知道盒子里面装的是什么。当參赛者选中了第一个盒子时,主持人随机的打开了手中两个盒子中的一个,结果里面装的是石头。这时,參赛者能够做终于的选择。请问。假设你是參赛者,应怎样选择以使自己获得钻石的概率更大一些?
看过题目二后。非常多人都说了。这不是与题目一全然一样吗?两道题的答案都应当是:坚持原来的选择与改变选择,获得钻石的概率是一样的,均为50%。
假设你的回答跟上面的一样的话,我仅仅能非常抱歉的告诉你,你的回答是错误的。好,让我来告诉大家正确的答案:题目一答案为。应当改变选择。去选主持人手中的那一个盒子,这样。获得钻石的概率为2/3。
而题目二的答案是,无所谓。改不改变选择。获得钻石的概率均为1/2。
可能有的读者看到这里会不相信了,明明两道题目中发生的事件是一样的,怎么会有不同的答案?尽管题目一中主持人知道盒子中装的是什么。而二中主持人不知道。但他们做的事情是一模一样的啊?难道主持人知不知道也会对事件的概率产生影响,这也太唯心了吧!
好,以下让我们来分析一下这两道题目。
我们能够将參赛者第一次选择的盒子装的是钻石称为事件A,主持人打开的盒子中装着石头称为事件B。
在问题的分析中我们要用到条件概率公式:
P(A|B)=P(AB)/P(B)
当中P(A|B)为在事件B发生的条件下A发生的概率。P(AB)为A事件与B事件都发生的概率,P(B)为事件B发生的概率。显然坚持原来选择得到钻石的概率等于在主持人打开的盒子中装有石头的条件下,參赛者第一次选择的盒子中装有钻石的概率。即等于P(A|B)。
我们先来分析第二道题目。事件A发生的概率。也就是參赛者第一次选择的盒子中装有钻石的概率P(A)显然是1/3,因为主持人并不知道每一个盒子中装的是什么,而三个盒子中有两个装着石头,因此主持人随机打开的盒子中装有石头的概率,也就是事件B发生的概率P(B)为2/3。
我们再来讨论事件A与事件B都发生的概率,显然,假设參赛者第一次选的为钻石。则主持人打开的盒子一定是装着石头。即假设A事件发生,则B事件一定发生。所以P(AB)=P(A)=1/3。这样P(A|B)=(1/3)/(2/3)=1/2。
原来的选择(不换的概率是1/2,那么又一次选择,换的概率为1-1/2=1/2)。也就是说坚持原来的选择获得钻石的概率为1/2。
我们再来分析题目一,P(A)依旧是1/3,P(AB)也依旧是1/3。改变了的仅仅有P(B)。因为主持人知道盒子里装的是什么。所以他为了排除一个盒子应当打开一个有石头的。而他的两个盒子中至少有一个里面装的是石头。所以他打开的盒子中有石头的概率为1,即P(B)=1。
这样P(A|B)=(1/3)/1=1/3。所以坚持原来的选择仅仅能有三分之中的一个的概率得到钻石,而改变主意则有(1-1/3=2/3)三分之二的概率得到钻石,故应改变主意。
所以,在概率问题的分析中,我们不要凭感觉,而应当依照公式,一步一步的分析以得出最后的答案。以下再给出两道类似的概率题目,希望大家认真分析以得出正确的答案。
1
于是警卫告诉X。Y将被处死。X感到非常高兴。由于他觉得他或者Z将被释放,这意味着他被释放的概率是1/2。
他正确吗?或者他的机会仍然是1/3?
2
答案:1
标签:游戏 strong 也会 题目 span pos 等于 class 答案
原文地址:http://www.cnblogs.com/tlnshuju/p/6881705.html