码迷,mamicode.com
首页 > 其他好文 > 详细

Boosting

时间:2017-05-21 14:49:50      阅读:166      评论:0      收藏:0      [点我收藏+]

标签:oss   min   work   initial   xtend   .com   mod   extend   put   

Boosting is a greedy alogrithm. The alogrithm works by applying the weak learner sequentially to weighted version of the data, where more weight is given to examples that were misclassified by earlier rounds. Breiman( 1998) showed that boosting can be interperted as a form of gradient descent in function space. This view was then extended in (Friedman et al. 2000), who showed how boosting could be extended to handle a variety of loss functions , including for regression, robust regression, Poission regression, etc. 

1. Forward stagewise additive modeling:

   The goal of boosting is to solve the following optimization problem:

  \(\min_{f} \sum_{i=1}^N L(y_i, f(x_i))\)

and \(L(y,\hat{y})\) is some loss function, and f is assumed to be an (adaptive basis function model) ABM.

技术分享

the picture above portries some possible loss function and their corresponding algrithm names.

2. The procedures of forward stagewise algorithm:

Input: training data: \( T = \{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\}\); Loss function \(L(y,f(x))\); basis function set: \(b\{x;r\}\).

Output: addative model: f(x):

(1)  Initialize \(f_0(x)=\).

(2) for m in  1,2,...,M:

  (a): minimize loss function:

    \((\beta_m,r_m) = argmin_{\beta,r} \sum_{i = 1}^{N}L(y_i,f_{m-1}(x_i) + \beta b(x_i;r))\);

     then we got the parameters: \(\beta_m,r_m\).

  (b): Update:

    \(f_m(x) = f_{m-1} (x) = \beta_m b_(x;r_m)\)

(3) additive model:

  \(f(x) = f_M(x) = \sum_{m =1}^N \beta_m b(x;r_m)\)

 

Boosting

标签:oss   min   work   initial   xtend   .com   mod   extend   put   

原文地址:http://www.cnblogs.com/vpegasus/p/6884671.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!