一、归并排序
算法思路就是把数组分成左右两个部分,然后再进行归并两个有序表
void merge(int* num,int start,int mid,int end,int* copy)
{
int i = start,m = mid,j = mid+1,n = end,k=start;
while(i <= m && j <= n)
{
if(num[i] < num[j])copy[k++] = num[i++];
else copy[k++] = num[j++];
}
while(i <= m)copy[k++] = num[i++];
while(j <= n)copy[k++] = num[j++];
while(--k >= start)
{
num[k] = copy[k];
}
}
int mergeSort(int* num,int start,int end,int* copy)
{
if(start < end)
{
int mid = start + ((end - start)>>1);
mergeSort(num,start,mid,copy);//分成两个有序数组
mergeSort(num,mid+1,end,copy);
merge(num,start,mid,end,copy);//归并两个有序数组
}
}
void mergeSort(int* num,int length)
{
int* copy = new int[length];
mergeSort(num,0,length-1,copy);
}变形一:leetcode之
Sort a linked list in O(n log n) time using constant space complexity.
方法一;归并
struct ListNode {
int val;
ListNode *next;
ListNode(int x) : val(x), next(NULL) {}
};
class Solution {
public:
ListNode *sortList(ListNode *head)
{
if(!head || !head->next)return head;
ListNode* fast = head -> next -> next;//至少有两个节点
ListNode* slow = head;
while(fast)
{
fast = fast->next;
slow = slow->next;
if(!fast)break;
fast = fast->next;
}
ListNode* p = slow -> next;
slow -> next = NULL;
ListNode* q = sortList(head);
p = sortList(p);
head = NULL;
ListNode* tail = NULL;
while(q && p)
{
if(q->val > p->val)
{
if(!head)head = tail = p;
else
{
tail->next = p;
tail = tail->next;
}
p = p->next;
}
else
{
if(!head)head = tail = q;
else
{
tail->next = q;
tail = tail->next;
}
q = q->next;
}
}
if(p)
{
if(!head)head = tail = p;
tail->next = p;
}
if(q)
{
if(!head)head = tail = q;
else tail->next = q;
}
return head;
}
};方法二:快排,具体参考这里剑指offer之数组中的逆序对
在数组中的两个数如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对,输入一个数组,求出这个数组中逆序对的总数
方法:边归并,边计数
void merge(int* data,int start,int mid,int end,int* tmp,int& count)
{
int i = mid,m = start,j = end,n = mid+1,k = end;
while(i >= m && j >= n)
{
if(data[i] > data[j])
{
count += j - n + 1;
tmp[k--] = data[i--];
}
else
{
tmp[k--] = data[j--];
}
}
while(i >= m)tmp[k--] = data[i--];
while(j >= n)tmp[k--] = data[j--];
while(++k <= end)data[k] = tmp[k];
}
void InversePairs(int* data,int start,int end,int* tmp,int& count)
{
if(start < end)
{
int mid = start + ((end - start)>>1);
InversePairs(data,start,mid,tmp,count);
InversePairs(data,mid+1,end,tmp,count);
merge(data,start,mid,end,tmp,count);
}
}
int InversePairs(int* data,int length)
{
int* tmp = new int[length];
int count = 0;
InversePairs(data,0,length-1,tmp,count);
delete[] tmp;
return count;
}
原文地址:http://blog.csdn.net/fangjian1204/article/details/38865087