标签:depend ring size listening spark collect intellij array using
Spark GraphX是一个分布式的图处理框架。社交网络中,用户与用户之间会存在错综复杂的联系,如微信、QQ、微博的用户之间的好友、关注等关系,构成了一张巨大的图,单机无法处理,只能使用分布式图处理框架处理,Spark GraphX就是一种分布式图处理框架。
在项目的pom文件中加上Spark GraphX的包:
<dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-graphx_2.10</artifactId> <version>1.6.0</version> </dependency>
// 设置运行环境 val conf = new SparkConf().setAppName("Simple GraphX").setMaster("spark://master:7077").setJars(Seq("E:\\Intellij\\Projects\\SimpleGraphX\\SimpleGraphX.jar")) val sc = new SparkContext(conf)
图是由若干顶点和边构成的,Spark GraphX里面的图也是一样的,所以在初始图之前,先要定义若干的顶点和边:
// 顶点 val vertexArray = Array( (1L,("Alice", 38)), (2L,("Henry", 27)), (3L,("Charlie", 55)), (4L,("Peter", 32)), (5L,("Mike", 35)), (6L,("Kate", 23)) ) // 边 val edgeArray = Array( Edge(2L, 1L, 5), Edge(2L, 4L, 2), Edge(3L, 2L, 7), Edge(3L, 6L, 3), Edge(4L, 1L, 1), Edge(5L, 2L, 3), Edge(5L, 3L, 8), Edge(5L, 6L, 8) )
然后再利用点和边生成各自的RDD:
//构造vertexRDD和edgeRDD val vertexRDD:RDD[(Long,(String,Int))] = sc.parallelize(vertexArray) val edgeRDD:RDD[Edge[Int]] = sc.parallelize(edgeArray)
最后利用两个RDD生成图:
// 构造图 val graph:Graph[(String,Int),Int] = Graph(vertexRDD, edgeRDD)
Spark GraphX图的属性包括:
(1)graph.vertices:图中的所有顶点;
(2)graph.edges:图中所有的边;
(3)graph.triplets:由三部分组成,源顶点,目的顶点,以及两个顶点之间的边;
(4)graph.degrees:图中所有顶点的度;
(5)graph.inDegrees:图中所有顶点的入度;
(6)graph.outDegrees:图中所有顶点的出度;
对这些属性的操作,直接上代码:
//图的属性操作 println("*************************************************************") println("属性演示") println("*************************************************************") // 方法一 println("找出图中年龄大于20的顶点方法之一:") graph.vertices.filter{case(id,(name,age)) => age>20}.collect.foreach { case(id,(name,age)) => println(s"$name is $age") } // 方法二 println("找出图中年龄大于20的顶点方法之二:") graph.vertices.filter(v => v._2._2>20).collect.foreach { v => println(s"${v._2._1} is ${v._2._2}") } // 边的操作 println("找出图中属性大于3的边:") graph.edges.filter(e => e.attr>3).collect.foreach(e => println(s"${e.srcId} to ${e.dstId} att ${e.attr}")) println // Triplet操作 println("列出所有的Triples:") for(triplet <- graph.triplets.collect){ println(s"${triplet.srcAttr._1} likes ${triplet.dstAttr._1}") } println println("列出边属性>3的Triples:") for(triplet <- graph.triplets.filter(t => t.attr > 3).collect){ println(s"${triplet.srcAttr._1} likes ${triplet.dstAttr._1}") } println // Degree操作 println("找出图中最大的出度,入度,度数:") def max(a:(VertexId,Int), b:(VertexId,Int)):(VertexId,Int) = { if (a._2>b._2) a else b } println("Max of OutDegrees:" + graph.outDegrees.reduce(max)) println("Max of InDegrees:" + graph.inDegrees.reduce(max)) println("Max of Degrees:" + graph.degrees.reduce(max)) println
运行结果:
Using Spark‘s default log4j profile: org/apache/spark/log4j-defaults.properties
17/05/22 20:45:35 INFO Slf4jLogger: Slf4jLogger started
17/05/22 20:45:35 INFO Remoting: Starting remoting
17/05/22 20:45:35 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem@192.168.1.101:53375]
*************************************************************
属性演示
*************************************************************
找出图中年龄大于20的顶点方法之一:
Peter is 32
Alice is 38
Charlie is 55
Mike is 35
找出图中年龄大于20的顶点方法之二:
Peter is 32
Alice is 38
Charlie is 55
Mike is 35
找出图中属性大于3的边:
3 to 2 att 7
5 to 3 att 8
5 to 6 att 8
列出所有的Triples:
Henry likes Alice
Henry likes Peter
Charlie likes Henry
Charlie likes Kate
Peter likes Alice
Mike likes Henry
Mike likes Charlie
Mike likes Kate
列出边属性>3的Triples:
Charlie likes Henry
Mike likes Charlie
Mike likes Kate
找出图中最大的出度,入度,度数:
Max of OutDegrees:(5,3)
Max of InDegrees:(1,2)
Max of Degrees:(2,4)
标签:depend ring size listening spark collect intellij array using
原文地址:http://www.cnblogs.com/mstk/p/6891302.html