标签:ret solution length val ++ min integer imu lis
Important:
The hardest part is to define the state(here is f[x][y]) and its function(the relationship between them)
public class Solution { /** * @param triangle: a list of lists of integers. * @return: An integer, minimum path sum. */ public int minimumTotal(int[][] triangle) { // write your code here if (triangle == null || triangle.length == 0) { return 0; } if (triangle[0] == null || triangle[0].length == 0) { return 0; } int n = triangle.length; //initiallize //f[x][y]: minimum path value from (0,0) to (x, y) int[][] f = new int[n][n]; //top value f[0][0] = triangle[0][0]; //two sides for (int i = 1; i < n; i++) { f[i][0] = f[i - 1][0] + triangle[i][0]; f[i][i] = f[i - 1][i - 1] + triangle[i][i]; } //Top to bottom for(int i = 1; i < n; i++) { for(int j = 1; j < i; j++) { f[i][j] = Math.min(f[i - 1][j - 1], f[i - 1][j]) + triangle[i][j]; } } //find the minimum in the bottom int minimum = f[n - 1][0]; for(int i = 1; i < n; i++) { if (minimum > f[n - 1][i]) { minimum = f[n - 1][i]; } } return minimum; } }
标签:ret solution length val ++ min integer imu lis
原文地址:http://www.cnblogs.com/codingEskimo/p/6901821.html