标签:top ble 进程 表示 官方文档 compute form tag proc
前一篇理解cpu topology对CPU Topology进行了学习总结,这里想总结下OpenStack下vCPU与pCPU常用的的绑定方式。 在尝试这些绑定之前,尤其是处理NUMA架构时还是建议看看前一篇文章,或者google一下相关概念,这样才能灵活自如。
使用启动参数isolcpus控制操作系统级别的CPU隔离
存在这样的一个需求,Compute节点操作系统自身与Hypervisor两个怎样才能隔离开,也就是不能让系统自身的服务占用了虚拟化资源。 解决起来很简单,就是指定操作系统只能用哪些cpu,而剩下的是留给hypervisor用的。具体的实现就是使用了isolcpus
内核启动参数。
如isolcpus=4,5,6,7,8
,表示系统启动后新进程不会使用4-8cpu,
isolcpus = [KNL,SMP]
format:
<cpu number>,...,<cpu number>
or
<cpu number>-<cpu number>
or
<cpu number>,...,<cpu number>-<cpu number>
isolcpus的原理也很简单:通过设置进程的cpu亲和性来实现.启动时设置init进程的亲和性,后续的进程均会继承init进程的亲和性设置. 这样就达到了整个系统的亲和性一致.如果后续的用户想修改亲和性可以通过
taskset
来实现.
永久生效需要在grub中修改kernel的启动参数.
taskset
设置进程亲和性tasket
使用非常简单,能够实时的进行cpu亲和性设置.
# 设置亲和性 taskset -cp mask pid
taskset -cp 0-3 1234
# 获取亲和性 taskset -cp pid
taskset -cp 1234
Cgroup能够管理cpu资源.cgroup使用了特殊的文件系统,可以像正常的文件操作一样完成cgroup的设置.也可是使用特定的命令来进行设置.具体操作可以参考Linux的Cgroup
Cgroup能够控制隔离cpu资源,但是更多的是QOS功能.
virsh vcpupin guest1 4 0,1,2,3,8,9,10,11
主要是使用virsh vcpupin
命令来实现,上面就是将虚机guest1的vcpu 4绑定到host的0,1,2,3,8,9,10,11上.
I版的时候cpu bingdings非常简单,只要设置nova的vcpu_pin_set即可,也是挺粗糙的.
#nova.conf
[DEFAULT]
...
vcpu_pin_set=4-31
J版的时候社区完善了功能,可以针对numa特性来进行绑定了.在numa体系中玩binding不是那么简单了.理解cpu topology应该能提供一点帮助.
举例(未验证)
管理员可以设置flavor的元数据来控制vm行为.
nova flavor-key m1.large set hw:numa_mempolicy=strict hw:numa_cpus.0=0,1,2,3 hw:numa_cpus.1=4,5,6,7 hw:numa_mem.0=1 hw:numa_mem.1=1 hw:cpu_policy=decicated hw:cpu_threads_policy=separate
用户可以自己设置image元数据来达到定制需求,当然flavor的元数据优先级是高于image优先级的.
glance image-update image_id –property hw_numa_mempolicy=strict –property hw_numa_cpus.0=0,1,2,3 –property hw_numa_cpus.1=4,5,6,7 –property hw_numa_mem.0=1 –property hw_numa_mem.1=1 --property hw_cpu_policy=decicated --property hw_cpu_threads_policy=separate
上面的例子中,cpu的绑定hw:cpu_threads_policy参数其实是不起作用的,到M版代码中也没有相关实现.如果cpu_policy=decicated时,host开启超线程,相关vcpu会绑定在同一个core的threads上, 这样的绑定方式会导致vm性能很差, Be careful! 官方文档有的时候很坑……
以上文档建议阅读
标签:top ble 进程 表示 官方文档 compute form tag proc
原文地址:http://www.cnblogs.com/ruiy/p/6912758.html