标签:its ini 线性 str algorithm work break txt round
水题略过
#include<cstdio> #include<cstdlib> #include<cmath> using namespace std; typedef long long int LL; int main() { LL a,b; scanf("%I64d%I64d",&a,&b); LL num=1; while(true) { if(a<num){printf("Vladik\n");return 0;} a-=num; //b+=num; num++; if(b<num){printf("Valera\n");return 0;} b-=num; //a+=num; num++; } return 0; }
B. Vladik and Complicated Book
给定一个序列, 询问子区间【l,r】的第k小数是不是原位置的数。
显然可以用主席树维护,不过这道题数据放水了,用暴力一点的方法应该也能过。
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int N = 100000 + 5; int a[N], b[N], rt[N * 20], ls[N * 20], rs[N * 20], sum[N * 20],numm[N]; int n, k, tot, sz, ql, qr, x, q, T; void Build(int& o, int l, int r){ if(l>r)return ; o = ++ tot; sum[o] = 0; if(l == r) return; int m = (l + r) >> 1; Build(ls[o], l, m); Build(rs[o], m + 1, r); } void update(int& o, int l, int r, int last, int p){ o = ++ tot; ls[o] = ls[last]; rs[o] = rs[last]; sum[o] = sum[last] + 1; if(l == r) return; int m = (l + r) >> 1; if(p <= b[m]) update(ls[o], l, m, ls[last], p); else update(rs[o], m + 1, r, rs[last], p); } int query(int ss, int tt, int l, int r, int k){ if(l == r) return l; int m = (l + r) >> 1; int cnt = sum[ls[tt]] - sum[ls[ss]]; if(k <= cnt) return query(ls[ss], ls[tt], l, m, k); else return query(rs[ss], rs[tt], m + 1, r, k - cnt); } void work(){ scanf("%d%d%d", &ql, &qr, &x); int xx=x; x=(xx-ql+1); int ans = query(rt[ql - 1], rt[qr], 1, sz, x); if(b[ans]==numm[xx])printf("Yes\n"); else printf("No\n"); } int main(){//freopen("t.txt","r",stdin); T=1; while(T--){ scanf("%d%d", &n, &q); for(int i = 1; i <= n; i ++) scanf("%d", a + i), numm[i]=b[i] = a[i]; sort(b + 1, b + n + 1); sz = unique(b + 1, b + n + 1) - (b + 1); tot = 0; Build(rt[0],1, sz); //for(int i = 0; i <= 4 * n; i ++)printf("%d,rt = %d,ls = %d, rs = %d, sum = %d\n", i, rt[i], ls[i], rs[i], sum[i]); //for(int i = 1; i <= n; i ++)a[i] = lower_bound(b + 1, b + sz + 1, a[i]) - b; for(int i = 1; i <= n; i ++)update(rt[i], 1, sz, rt[i - 1], a[i]); // for(int i = 0; i <= 5 * n; i ++)printf("%d,rt = %d,ls = %d, rs = %d, sum = %d\n", i, rt[i], ls[i], rs[i], sum[i]); while(q --)work(); } return 0; }
O(n^2)的线性dp 不要想太多。。(我都想到DAG去了。。。)
代码比较简单,可以直接看懂。
#include <bits/stdc++.h> using namespace std; vector <int> ps [5010], cs[5010]; int s[5010] , e[5010]; bool vis[5010]; long long dp [5010]; int main() { int n; scanf("%d",&n); vector <int> a (n); for (int i = 0; i < n; i++) { scanf("%d",&a[i]); if (!vis[a[i]]) s[a[i]] = i; vis[a[i]] = 1; e[a[i]] = i; } for (int i = 0; i < n; i++) vis[a[i]] = 0; for (int i = 0; i < n; i++) { int mx = i, rx = 0, lj = i; for (int j = i; j < n; j++) { if (s[a[j]] < i) break; lj = j; mx = max(mx,e[a[j]]); if (!vis[a[j]]) rx ^= a[j]; vis[a[j]] = 1; if (mx <= j) { ps[i].push_back(j); cs[i].push_back(rx); } } for (int k = lj; k >= i; k--) vis[a[k]] = 0; } for (int i = n-1; i >= 0; i--) { dp[i] = dp[i+1]; for (int j = 0; j < ps[i].size(); j++) { dp[i] = max(dp[i],dp[ps[i][j]+1]+cs[i][j]); } } printf("%I64d\n",dp[0]); }
E. Vladik and Entertaining Flags
标签:its ini 线性 str algorithm work break txt round
原文地址:http://www.cnblogs.com/heisenberg-/p/6914443.html