码迷,mamicode.com
首页 > 其他好文 > 详细

42. Subsets && Subsets II

时间:2014-08-27 20:25:18      阅读:168      评论:0      收藏:0      [点我收藏+]

标签:des   style   blog   os   io   strong   for   div   cti   

Subsets

Given a set of distinct integers, S, return all possible subsets.

Note:

  • Elements in a subset must be in non-descending order.
  • The solution set must not contain duplicate subsets.

 

For example, If S = [1,2,3], a solution is:

[
  [3],
  [1],
  [2],
  [1,2,3],
  [1,3],
  [2,3],
  [1,2],
  []
]

思想: 顺序读,取前面的每个子集,把该位置数放后面作为新的子集。
class Solution {
public:
    vector<vector<int> > subsets(vector<int> &S) {
        sort(S.begin(), S.end());
        vector<vector<int> > vec(1);
        for(size_t id = 0; id < S.size(); ++id) {
            int n = vec.size();
            while(n-- > 0) {
                vec.push_back(vec[n]);
                vec.back().push_back(S[id]);
            }
        }
        return vec;
    }
};

 

Subsets II

Given a collection of integers that might contain duplicates, S, return all possible subsets.

Note:

  • Elements in a subset must be in non-descending order.
  • The solution set must not contain duplicate subsets.

 

For example, If S = [1,2,2], a solution is:

[
  [2],
  [1],
  [1,2,2],
  [2,2],
  [1,2],
  []
]
思想: 排序后,按照 1 的方法。但是若前面的数字与本数字相同,则只读取含有前面数字的每个子集,把自身放在后面作为一个新的子集。
class Solution {
public:
    vector<vector<int> > subsetsWithDup(vector<int> &S) {
        sort(S.begin(), S.end());
        vector<vector<int> > vec(1);
        size_t prePos, endTag;
        prePos = endTag = 0;
        for(size_t id = 0; id < S.size(); ++id) {
            if(id > 0 && S[id] != S[id-1]) endTag = 0;
            else endTag = prePos;
            size_t n = vec.size();
            prePos = n;
            while(n > endTag) {
                --n;
                vec.push_back(vec[n]);
                vec.back().push_back(S[id]);
            }
        }
        return vec;
    }
};

 

















          

42. Subsets && Subsets II

标签:des   style   blog   os   io   strong   for   div   cti   

原文地址:http://www.cnblogs.com/liyangguang1988/p/3940198.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!