标签:bre clu while sizeof i+1 print sum 鸽巢原理 eof
Halloween treats
和POJ2356差点儿相同。
事实上这种数列能够有非常多,也能够有不连续的,只是利用鸽巢原理就是方便找到了连续的数列。并且有这种数列也必然能够找到。
#include <cstdio> #include <cstdlib> #include <xutility> int main() { int c, n; while (scanf("%d %d", &c, &n) && c) { int *neighbours = (int *) malloc(sizeof(int) * n); int *sumMod = (int *) malloc(sizeof(int) * (n+1)); int *iiMap = (int *) malloc(sizeof(int) * c); std::fill(iiMap, iiMap+c, -1); sumMod[0] = 0; int L = -1, R = -1; for (int i = 0; i < n; i++) scanf("%d", &neighbours[i]); for (int i = 0; i < n; i++) { sumMod[i+1] = (sumMod[i] + neighbours[i]) % c; if (sumMod[i+1] == 0) { L = 1, R = ++i;//下标从1起 break; } if (iiMap[sumMod[i+1]] != -1) { L = iiMap[sumMod[i+1]] + 2, R = ++i; //下标从1起 break; } iiMap[sumMod[i+1]] = i; } if (R != -1) { for (int i = L; i < R; i++) { printf("%d ", i); } printf("%d\n", R); } else puts("no sweets"); free(neighbours), free(iiMap), free(sumMod); } return 0; }
POJ 3370 Halloween treats 鸽巢原理 解题
标签:bre clu while sizeof i+1 print sum 鸽巢原理 eof
原文地址:http://www.cnblogs.com/cxchanpin/p/6915441.html