标签:cron == strong 程序 turn problem fse ges iplimage
转自:http://blog.csdn.net/xw20084898/article/details/17564957
一、工具:VC+OpenCV
二、语言:C++
三、原理
otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别 来划分。 所以 可以在二值化的时候 采用otsu算法来自动选取阈值进行二值化。otsu算法被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比度的影响。因此,使类间方差最大的分割意味着错分概率最小。
设t为设定的阈值。
wo: 分开后 前景像素点数占图像的比例
uo: 分开后 前景像素点的平均灰度
w1:分开后 被景像素点数占图像的比例
u1: 分开后 被景像素点的平均灰度
u=w0*u0 + w1*u1 :图像总平均灰度
从L个灰度级遍历t,使得t为某个值的时候,前景和背景的方差最大, 则 这个 t 值便是我们要求得的阈值。
其中,方差的计算公式如下:
g=wo * (uo - u) * (uo - u) + w1 * (u1 - u) * (u1 - u)
[ 此公式计算量较大,可以采用: g = wo * w1 * (uo - u1) * (uo - u1) ]
由于otsu算法是对图像的灰度级进行聚类,so 在执行otsu算法之前,需要计算该图像的灰度直方图。
迭代法原理:迭代选择法是首先猜测一个初始阈值,然后再通过对图像的多趟计算对阈值进行改进的过程。重复地对图像进行阈值操作,将图像分割为对象类和背景类,然后来利用每一个类中的灰阶级别对阈值进行改进。
图像阈值分割---迭代算法
1 .处理流程:
1.为全局阈值选择一个初始估计值T(图像的平均灰度)。
2.用T分割图像。产生两组像素:G1有灰度值大于T的像素组成,G2有小于等于T像素组成。
3.计算G1和G2像素的平均灰度值m1和m2;
4.计算一个新的阈值:T = (m1 + m2) / 2;
5.重复步骤2和4,直到连续迭代中的T值间的差小于一个预定义参数为止。
适合图像直方图有明显波谷
四、程序
主程序(核心部分)
- 阈值分割
- 1
- 2
- 3
- 4 IplImage* binaryImg = cvCreateImage(cvSize(w, h),IPL_DEPTH_8U, 1);
- 5 cvThreshold(smoothImgGauss,binaryImg,71,255,CV_THRESH_BINARY);
- 6 cvNamedWindow("cvThreshold", CV_WINDOW_AUTOSIZE );
- 7 cvShowImage( "cvThreshold", binaryImg );
- 8
- 9
- 10
- 11 IplImage* adThresImg = cvCreateImage(cvSize(w, h),IPL_DEPTH_8U, 1);
- 12 double max_value=255;
- 13 int adpative_method=CV_ADAPTIVE_THRESH_GAUSSIAN_C;
- 14 int threshold_type=CV_THRESH_BINARY;
- 15 int block_size=3;
- 16 int offset=5;
- 17 cvAdaptiveThreshold(smoothImgGauss,adThresImg,max_value,adpative_method,threshold_type,block_size,offset);
- 18 cvNamedWindow("cvAdaptiveThreshold", CV_WINDOW_AUTOSIZE );
- 19 cvShowImage( "cvAdaptiveThreshold", adThresImg );
- 20 cvReleaseImage(&adThresImg);
- 21
- 22
- 23 IplImage* imgMaxEntropy = cvCreateImage(cvGetSize(imgGrey),IPL_DEPTH_8U,1);
- 24 MaxEntropy(smoothImgGauss,imgMaxEntropy);
- 25 cvNamedWindow("MaxEntroyThreshold", CV_WINDOW_AUTOSIZE );
- 26 cvShowImage( "MaxEntroyThreshold", imgMaxEntropy );
- 27 cvReleaseImage(&imgMaxEntropy );
- 28
- 29
- 30 IplImage* imgBasicGlobalThreshold = cvCreateImage(cvGetSize(imgGrey),IPL_DEPTH_8U,1);
- 31 cvCopyImage(srcImgGrey,imgBasicGlobalThreshold);
- 32 int pg[256],i,thre;
- 33 for (i=0;i<256;i++) pg[i]=0;
- 34 for (i=0;i<imgBasicGlobalThreshold->imageSize;i++)
- 35 pg[(BYTE)imgBasicGlobalThreshold->imageData[i]]++;
- 36 thre = BasicGlobalThreshold(pg,0,256);
- 37 cout<<"The Threshold of this Image in BasicGlobalThreshold is:"<<thre<<endl;
- 38 cvThreshold(imgBasicGlobalThreshold,imgBasicGlobalThreshold,thre,255,CV_THRESH_BINARY);
- 39 cvNamedWindow("BasicGlobalThreshold", CV_WINDOW_AUTOSIZE );
- 40 cvShowImage( "BasicGlobalThreshold", imgBasicGlobalThreshold);
- 41 cvReleaseImage(&imgBasicGlobalThreshold);
- 42
- 43
- 44 IplImage* imgOtsu = cvCreateImage(cvGetSize(imgGrey),IPL_DEPTH_8U,1);
- 45 cvCopyImage(srcImgGrey,imgOtsu);
- 46 int thre2;
- 47 thre2 = otsu2(imgOtsu);
- 48 cout<<"The Threshold of this Image in Otsu is:"<<thre2<<endl;
- 49 cvThreshold(imgOtsu,imgOtsu,thre2,255,CV_THRESH_BINARY);
- 50 cvNamedWindow("imgOtsu", CV_WINDOW_AUTOSIZE );
- 51 cvShowImage( "imgOtsu", imgOtsu);
- 52 cvReleaseImage(&imgOtsu);
- 53
- 54
- 55 IplImage* imgTopDown = cvCreateImage( cvGetSize(imgGrey), IPL_DEPTH_8U, 1 );
- 56 cvCopyImage(srcImgGrey,imgTopDown);
- 57 CvScalar mean ,std_dev;
- 58 double u_threshold,d_threshold;
- 59 cvAvgSdv(imgTopDown,&mean,&std_dev,NULL);
- 60 u_threshold = mean.val[0] +2.5* std_dev.val[0];
- 61 d_threshold = mean.val[0] -2.5* std_dev.val[0];
- 62
- 63
- 64 cout<<"The TopThreshold of this Image in TopDown is:"<<d_threshold<<endl;
- 65 cout<<"The DownThreshold of this Image in TopDown is:"<<u_threshold<<endl;
- 66 cvThreshold(imgTopDown,imgTopDown,d_threshold,u_threshold,CV_THRESH_BINARY_INV);
- 67 cvNamedWindow("imgTopDown", CV_WINDOW_AUTOSIZE );
- 68 cvShowImage( "imgTopDown", imgTopDown);
- 69 cvReleaseImage(&imgTopDown);
- 70
- 71
- 72 IplImage* imgIteration = cvCreateImage( cvGetSize(imgGrey), IPL_DEPTH_8U, 1 );
- 73 cvCopyImage(srcImgGrey,imgIteration);
- 74 int thre3,nDiffRec;
- 75 thre3 =DetectThreshold(imgIteration, 100, nDiffRec);
- 76 cout<<"The Threshold of this Image in imgIteration is:"<<thre3<<endl;
- 77 cvThreshold(imgIteration,imgIteration,thre3,255,CV_THRESH_BINARY_INV);
- 78 cvNamedWindow("imgIteration", CV_WINDOW_AUTOSIZE );
- 79 cvShowImage( "imgIteration", imgIteration);
- 80 cvReleaseImage(&imgIteration);
- 迭代
- 1
- 2
- 3
- 4
- 5 int DetectThreshold(IplImage*img, int nMaxIter, int& iDiffRec)
- 6 {
- 7
- 8 int height = img->height;
- 9 int width = img->width;
- 10 int step = img->widthStep/sizeof(uchar);
- 11 uchar *data = (uchar*)img->imageData;
- 12
- 13 iDiffRec =0;
- 14 int F[256]={ 0 };
- 15 int iTotalGray=0;
- 16 int iTotalPixel =0;
- 17 byte bt;
- 18
- 19 uchar iThrehold,iNewThrehold;
- 20 uchar iMaxGrayValue=0,iMinGrayValue=255;
- 21 uchar iMeanGrayValue1,iMeanGrayValue2;
- 22
- 23
- 24 for(int i=0;i<width;i++)
- 25 {
- 26 for(int j=0;j<height;j++)
- 27 {
- 28 bt = data[i*step+j];
- 29 if(bt<iMinGrayValue)
- 30 iMinGrayValue = bt;
- 31 if(bt>iMaxGrayValue)
- 32 iMaxGrayValue = bt;
- 33 F[bt]++;
- 34 }
- 35 }
- 36
- 37 iThrehold =0;
- 38 iNewThrehold = (iMinGrayValue+iMaxGrayValue)/2;
- 39 iDiffRec = iMaxGrayValue - iMinGrayValue;
- 40
- 41 for(int a=0;(abs(iThrehold-iNewThrehold)>0.5)&&a<nMaxIter;a++)
- 42 {
- 43 iThrehold = iNewThrehold;
- 44
- 45 for(int i=iMinGrayValue;i<iThrehold;i++)
- 46 {
- 47 iTotalGray += F[i]*i;
- 48 iTotalPixel += F[i];
- 49 }
- 50 iMeanGrayValue1 = (uchar)(iTotalGray/iTotalPixel);
- 51
- 52 iTotalPixel =0;
- 53 iTotalGray =0;
- 54 for(int j=iThrehold+1;j<iMaxGrayValue;j++)
- 55 {
- 56 iTotalGray += F[j]*j;
- 57 iTotalPixel += F[j];
- 58 }
- 59 iMeanGrayValue2 = (uchar)(iTotalGray/iTotalPixel);
- 60
- 61 iNewThrehold = (iMeanGrayValue2+iMeanGrayValue1)/2;
- 62 iDiffRec = abs(iMeanGrayValue2 - iMeanGrayValue1);
- 63 }
- 64
- 65
- 66 return iThrehold;
- 67 }
- 68
- Otsu代码一
- 1
- 2
- 3
- 4
- 5
- 11
- 17
- 18 int otsu (unsigned char*image, int rows, int cols, int x0, int y0, int dx, int dy, int vvv)
- 19 {
- 20
- 21 unsigned char*np;
- 22 int thresholdValue=1;
- 23 int ihist[256];
- 24
- 25 int i, j, k;
- 26 int n, n1, n2, gmin, gmax;
- 27 double m1, m2, sum, csum, fmax, sb;
- 28
- 29
- 30 memset(ihist, 0, sizeof(ihist));
- 31
- 32 gmin=255; gmax=0;
- 33
- 34 for (i = y0 +1; i < y0 + dy -1; i++)
- 35 {
- 36 np = (unsigned char*)image[i*cols+x0+1];
- 37 for (j = x0 +1; j < x0 + dx -1; j++)
- 38 {
- 39 ihist[*np]++;
- 40 if(*np > gmax) gmax=*np;
- 41 if(*np < gmin) gmin=*np;
- 42 np++;
- 43 }
- 44 }
- 45
- 46
- 47 sum = csum =0.0;
- 48 n =0;
- 49
- 50 for (k =0; k <=255; k++)
- 51 {
- 52 sum += (double) k * (double) ihist[k];
- 53 n += ihist[k];
- 54 }
- 55
- 56 if (!n)
- 57 {
- 58
- 59 fprintf (stderr, "NOT NORMAL thresholdValue = 160\n");
- 60 return (160);
- 61 }
- 62
- 63
- 64 fmax =-1.0;
- 65 n1 =0;
- 66 for (k =0; k <255; k++)
- 67 {
- 68 n1 += ihist[k];
- 69 if (!n1)
- 70 {
- 71 continue;
- 72 }
- 73 n2 = n - n1;
- 74 if (n2 ==0)
- 75 {
- 76 break;
- 77 }
- 78 csum += (double) k *ihist[k];
- 79 m1 = csum / n1;
- 80 m2 = (sum - csum) / n2;
- 81 sb = (double) n1 *(double) n2 *(m1 - m2) * (m1 - m2);
- 82
- 83 if (sb > fmax)
- 84 {
- 85 fmax = sb;
- 86 thresholdValue = k;
- 87 }
- 88 }
- 89
- 90
- 91
- 92
- 93 if ( vvv &1 )
- 94 fprintf(stderr,"# OTSU: thresholdValue = %d gmin=%d gmax=%d\n",
- 95 thresholdValue, gmin, gmax);
- 96
- 97 return(thresholdValue);
- 98 }
- Otsu代码二
- 1
- 2
- 3
- 4 int otsu2 (IplImage *image)
- 5 {
- 6 int w = image->width;
- 7 int h = image->height;
- 8
- 9 unsigned char*np;
- 10 unsigned char pixel;
- 11 int thresholdValue=1;
- 12 int ihist[256];
- 13
- 14 int i, j, k;
- 15 int n, n1, n2, gmin, gmax;
- 16 double m1, m2, sum, csum, fmax, sb;
- 17
- 18
- 19 memset(ihist, 0, sizeof(ihist));
- 20
- 21 gmin=255; gmax=0;
- 22
- 23 for (i =0; i < h; i++)
- 24 {
- 25 np = (unsigned char*)(image->imageData + image->widthStep*i);
- 26 for (j =0; j < w; j++)
- 27 {
- 28 pixel = np[j];
- 29 ihist[ pixel]++;
- 30 if(pixel > gmax) gmax= pixel;
- 31 if(pixel < gmin) gmin= pixel;
- 32 }
- 33 }
- 34
- 35
- 36 sum = csum =0.0;
- 37 n =0;
- 38
- 39 for (k =0; k <=255; k++)
- 40 {
- 41 sum += k * ihist[k];
- 42 n += ihist[k];
- 43 }
- 44
- 45 if (!n)
- 46 {
- 47
- 48
- 49 thresholdValue =160;
- 50 goto L;
- 51 }
- 52
- 53
- 54 fmax =-1.0;
- 55 n1 =0;
- 56 for (k =0; k <255; k++)
- 57 {
- 58 n1 += ihist[k];
- 59 if (!n1) { continue; }
- 60 n2 = n - n1;
- 61 if (n2 ==0) { break; }
- 62 csum += k *ihist[k];
- 63 m1 = csum / n1;
- 64 m2 = (sum - csum) / n2;
- 65 sb = n1 * n2 *(m1 - m2) * (m1 - m2);
- 66
- 67 if (sb > fmax)
- 68 {
- 69 fmax = sb;
- 70 thresholdValue = k;
- 71 }
- 72 }
- 73
- 74 L:
- 75 for (i =0; i < h; i++)
- 76 {
- 77 np = (unsigned char*)(image->imageData + image->widthStep*i);
- 78 for (j =0; j < w; j++)
- 79 {
- 80 if(np[j] >= thresholdValue)
- 81 np[j] =255;
- 82 else np[j] =0;
- 83 }
- 84 }
- 85
- 86
- 87 return(thresholdValue);
- 88 }
- 最大熵阀值
- 1
- 8
- 9 double caculateCurrentEntropy(CvHistogram * Histogram1,int cur_threshold,entropy_state state)
- 10 {
- 11 int start,end;
- 12 int total =0;
- 13 double cur_entropy =0.0;
- 14 if(state == back)
- 15 {
- 16 start =0;
- 17 end = cur_threshold;
- 18 }
- 19 else
- 20 {
- 21 start = cur_threshold;
- 22 end =256;
- 23 }
- 24 for(int i=start;i<end;i++)
- 25 {
- 26 total += (int)cvQueryHistValue_1D(Histogram1,i);
- 27 }
- 28 for(int j=start;j<end;j++)
- 29 {
- 30 if((int)cvQueryHistValue_1D(Histogram1,j)==0)
- 31 continue;
- 32 double percentage = cvQueryHistValue_1D(Histogram1,j)/total;
- 33
- 34 cur_entropy +=-percentage*logf(percentage);
- 35
- 37 }
- 38 return cur_entropy;
- 39
- 40 }
- 41
- 42
- 43 void MaxEntropy(IplImage *src,IplImage *dst)
- 44 {
- 45 assert(src != NULL);
- 46 assert(src->depth ==8&& dst->depth ==8);
- 47 assert(src->nChannels ==1);
- 48 CvHistogram * hist = cvCreateHist(1,&HistogramBins,CV_HIST_ARRAY,HistogramRange);
- 49
- 50 cvCalcHist(&src,hist);
- 51 double maxentropy =-1.0;
- 52 int max_index =-1;
- 53
- 54 for(int i=0;i<HistogramBins;i++)
- 55 {
- 56 double cur_entropy = caculateCurrentEntropy(hist,i,object)+caculateCurrentEntropy(hist,i,back);
- 57 if(cur_entropy>maxentropy)
- 58 {
- 59 maxentropy = cur_entropy;
- 60 max_index = i;
- 61 }
- 62 }
- 63 cout<<"The Threshold of this Image in MaxEntropy is:"<<max_index<<endl;
- 64 cvThreshold(src, dst, (double)max_index,255, CV_THRESH_BINARY);
- 65 cvReleaseHist(&hist);
- 66 }
- 基本全局阀值法
- 1
- 4 int BasicGlobalThreshold(int*pg,int start,int end)
- 5 {
- 6 int i,t,t1,t2,k1,k2;
- 7 double u,u1,u2;
- 8 t=0;
- 9 u=0;
- 10 for (i=start;i<end;i++)
- 11 {
- 12 t+=pg[i];
- 13 u+=i*pg[i];
- 14 }
- 15 k2=(int) (u/t);
- 16 do
- 17 {
- 18 k1=k2;
- 19 t1=0;
- 20 u1=0;
- 21 for (i=start;i<=k1;i++)
- 22 {
- 23 t1+=pg[i];
- 24 u1+=i*pg[i];
- 25 }
- 26 t2=t-t1;
- 27 u2=u-u1;
- 28 if (t1)
- 29 u1=u1/t1;
- 30 else
- 31 u1=0;
- 32 if (t2)
- 33 u2=u2/t2;
- 34 else
- 35 u2=0;
- 36 k2=(int) ((u1+u2)/2);
- 37 }
- 38 while(k1!=k2);
- 39
- 40 return(k1);
- 41 }
七种常见阈值分割代码(Otsu、最大熵、迭代法、自适应阀值、手动、迭代法、基本全局阈值法)
标签:cron == strong 程序 turn problem fse ges iplimage
原文地址:http://www.cnblogs.com/wyuzl/p/6920045.html