码迷,mamicode.com
首页 > 其他好文 > 详细

Mooc数据结构-03树

时间:2017-06-02 17:40:45      阅读:182      评论:0      收藏:0      [点我收藏+]

标签:解决   完全   操作方法   事物   链式   二叉树   排列   管理   str   

1 树和树的表示

  在客观世界中有许多事物存在层次关系

  如: 人类社会的家谱; 社会的组织结构; 图书信息管理等等

  分层次组织在管理上有更高的效率

  数据管理的基本操作之一: 查找

    查找: 根据某个给定的关键字K, 从集合R中找出关键字与K相同的记录

    静态查找: 集合中的记录是固定的, 没有插入和删除操作

    动态查找: 集合中的记录是动态变化的, 可以查询, 插入和删除

  静态查找

    方法1:顺序查找

    技术分享

    Tb1指向一个存储空间, 有两部分内容, 一个是指向数组, 另一个是表中数据的个数

    一般把数组首或者尾作为哨兵, 用于减少一次循环终结的判断

    技术分享

    时间复杂度为O(n)

    方法二: 二分查找

    条件: 元素是有序排列的, 用数组来存储

    技术分享

    对N每次除以2直到N变为1, 因而时间复杂度为O(logN) 

  对于序列1~11, 根据二分查找的提示, 可以形成判定树

  技术分享

  判定树上的节点查找到的比较次数刚好是节点所在的层数

  查找成功的查找次数 <= 判定树的深度

  n个节点的判定树的深度为 [long2n]+1 (向下取整再加1)

  平均成功查找次数ASL = (层数*层所在的节点个数)求和/总结点数

    ASL = (4*4+4*3+2*2+1)/11=3

1.1 树的定义

  树: n个节点构成的有限集合

    当n=0时, 为空树

  非空树的性质:

    根root, 用r表示

    其余节点可分为m个互不相交的有限集合, 其中每个集合本身又是一棵树, 叫做原来树的子树

    技术分享

    子树是不相交的

    除了根节点, 每个节点有且仅有一个父节点

    一棵树N个节点的树有N-1条边

    树是保证节点连通的最小的连接方式

  树的基本术语

    结点的度: 结点的子树的个数

    树的度: 树的所有结点中最大的度数

    叶结点: 度为0的结点(没有子树)

    父结点: 若A有子树, 则A是子树的根节点B的父结点

    子结点: 孩子结点, B就是A的子结点

    兄弟结点: A有多个子树, 子树1的根节点B, 子树2的根节点C, 那么B和C就是兄弟结点

    路径和路径长度: 结点到结点的路径, 路径所包含的边的个数就是长度

    祖先节点: B的父节点A的父节点以及它的父节点, 到根为止都是B的祖先结点

    子孙结点

    结点的层次: 规定根结点的层次为1层

    树的深度: 树的最大层次

1.2 树的表示

  首先由于树的结构比较复杂, 有父子关系需要存储, 因此不采用数组的方式存储树

  一般的, 采用链表的形式来存储树

  技术分享

  技术分享

  这样的结构虽然表明了树, 但是由于每个节点的数据结构不统一, 需要改进

  (1) 孩子兄弟表示法

  结构中有两个指针域, 一个指向第一个孩子, 另一个执行相邻的兄弟

  技术分享

  对于n个结点, 有2n个指针域, 有n-1条边, 因此空余的指针域为(2n-n+1)=n+1

  对于这样的表示方式, 如果顺时针旋转45度, 也是一个树的样子, 这个样子就是二叉树

  二叉树是度为2的树

  一般地解决二叉树的问题能够解决树的很多问题, 二叉树是树研究的重点

2 二叉树及其存储结构

2.1 二叉树的定义和性质

  (1) 二叉树的定义

  二叉树:一个有穷的结点集合

    这个集合可以为空

    若不为空, 则它由根节点和其左子树右子树两个不相交的二叉树组成

  二叉树可以被理解为区分左右顺序的度为2的树

  二叉树的五种基本形态

  技术分享

  (2) 特殊二叉树

  技术分享

  只有左子树或者只有右子树

  技术分享

  技术分享

  也就是说, 完全二叉树只要是在编号上都能在完美二叉树上对应, 就是完全二叉树

  技术分享

  (3) 二叉树的性质

  第i层最大的结点数为2i-1

  深度为k的二叉树的最大结点数为2k-1

  对于非空二叉树, 叶结点个数 = 度为2的非叶结点个数 + 1

  技术分享

  证明方式为: 对于非空二叉树, 存在度为0, 1 ,2的结点, 个数分别记为n0, n1, n2

  根据 边=所有点-1=n0 + n1 +n2 -1

  同时度为0, 1, 2的结点分别提供了0, 1, 2条边

  因此 边 = 0*n0 + 1*n1 + 2*n2

  得到 n0 + n1 +n2 -1 = 0*n0 + 1*n1 + 2*n2

  (4) 二叉树的抽象数据类型定义

  技术分享

  最重要的操作方法是遍历

  技术分享

2.2 二叉树的存储结构

  (1) 顺序存储结构

  可以用数组存储完全二叉树

  完全二叉树: 按从上到下, 从左到右顺序存储n个结点的完全二叉树的结点父子关系 

  技术分享

  存储为

  技术分享

  同时可以通过计算得到一个结点的父亲节点, 左孩子, 右孩子

    父亲节点是[i/2]向下取整

    左孩子是 2i

    右孩子是 2i+1

  但是如果一般的二叉树采用这样的方式存储的话, 需要填充一部分不存在的元素, 因此会造成很大程度上的空间浪费

  (2) 链表存储

  技术分享

3 二叉树的遍历

  二叉树一般还是使用链式存储, 二叉树的遍历是基于链式存储的二叉树来的

  (1) 

  

  

 

 

 

 

  

 

  

 

 

 

 

        

  

 

  

  

    

    

        

 

 

 

    

    

    

  

 

Mooc数据结构-03树

标签:解决   完全   操作方法   事物   链式   二叉树   排列   管理   str   

原文地址:http://www.cnblogs.com/weihuchao/p/6933601.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!