码迷,mamicode.com
首页 > 其他好文 > 详细

中国mooc北京理工大学机器学习第二周(一):分类

时间:2017-06-03 11:28:13      阅读:300      评论:0      收藏:0      [点我收藏+]

标签:sam   span   参数   gauss   运动   nat   ica   tree   load   

一、K近邻方法(KNeighborsClassifier)

使用方法同kmeans方法,先构造分类器,再进行拟合。区别是Kmeans聚类是无监督学习,KNN是监督学习,因此需要划分出训练集和测试集。

 

直接贴代码。

 

X=[0,1,2,3]#样本
Y=[0,0,1,1]#标签
from  sklearn.neighbors import KNeighborsClassifier
neigh = KNeighborsClassifier(n_neighbors=3)#选择周围的三个点作为近邻分析
neigh.fit(X,Y)
neigh.predict(1.1)

 

K-NN可以看成:有那么一堆你已经知道分类的数据,然后当一个新数据进入的时候,就开始跟训练数据里的每个点求距离,然后挑离这个训练数据最近的K个点看看这几个点属于什么类型,然后用少数服从多数的原则,给新数据归类。

2、决策树(DessionTreeClassifer)

from sklearn.datasets import load_iris
form sklearn.tree import DessionTreeClassifier
from sklearn.model_selection import cross_val_score#交叉验证
clf = DessionTreeClassifier()#默认参数构造的话,基于基尼系数
iris = iris_load()
cross_val_score(clf,iris.data,iris.target,cv=10)#cv=10代表10折验证
from sklearn import tree
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)
 
clf.predict([[1.2, 1.2]])

三、朴素贝叶斯(naive_bayes.GaussianNB)

对于给定的数据,首先基于特征的条件独立性假设,学习输入输出的联合分布概率,然后基于此模型对给定的输入x,应用贝叶斯定力,测试其后验概率。

在sklearn中实现了高斯朴素贝叶斯,多项式朴素贝叶斯,多元伯努利朴素贝叶斯。

 

import numpy as np
from sklearn.naive_bayes import GaussianNB
X=np.array([[-1,-1],[-2,-1],[-3,-2],[1,1],[2,1],[3,2]])
Y=np.array([1,1,1,2,2,2])
clf=GaussianNB()
clf.fit(X,Y)
print(clf.predict([[-0.8,-1]]))

三、人体运动状态信息评级

    import pandas as pd
    import numpy as np  
     
    from sklearn.preprocessing import Imputer
    from sklearn.cross_validation import train_test_split 
    from sklearn.metrics import classification_report
       
    from sklearn.neighbors import KNeighborsClassifier#K近邻
    from sklearn.tree import DecisionTreeClassifier#决策树
    from sklearn.naive_bayes import GaussianNB#朴素贝叶斯
     
    def load_datasets(feature_paths, label_paths):
        feature = np.ndarray(shape=(0,41))
        label = np.ndarray(shape=(0,1))
        for file in feature_paths:
            df = pd.read_table(file, delimiter=,, na_values=?, header=None)
            imp = Imputer(missing_values=NaN, strategy=mean, axis=0)
            imp.fit(df)
            df = imp.transform(df)
            feature = np.concatenate((feature, df))
         
        for file in label_paths:
            df = pd.read_table(file, header=None)
            label = np.concatenate((label, df))
             
        label = np.ravel(label)
        return feature, label
     
    if __name__ == __main__:
        ‘‘‘ 数据路径 ‘‘‘
        featurePaths = [A.feature,B.feature,C.feature,D.feature,E.feature]
        labelPaths = [A.label,B.label,C.label,D.label,E.label]
        ‘‘‘ 读入数据  ‘‘‘
        x_train,y_train = load_datasets(featurePaths[:4],labelPaths[:4])
        x_test,y_test = load_datasets(featurePaths[4:],labelPaths[4:])
        x_train, x_, y_train, y_ = train_test_split(x_train, y_train, test_size = 0.0)
         
        print(Start training knn)
        knn = KNeighborsClassifier().fit(x_train, y_train)
        print(Training done)
        answer_knn = knn.predict(x_test)
        print(Prediction done)
         
        print(Start training DT)
        dt = DecisionTreeClassifier().fit(x_train, y_train)
        print(Training done)
        answer_dt = dt.predict(x_test)
        print(Prediction done)
         
        print(Start training Bayes)
        gnb = GaussianNB().fit(x_train, y_train)
        print(Training done)
        answer_gnb = gnb.predict(x_test)
        print(Prediction done)
         
        print(\n\nThe classification report for knn:)
        print(classification_report(y_test, answer_knn))
        print(\n\nThe classification report for DT:)
        print(classification_report(y_test, answer_dt))
        print(\n\nThe classification report for Bayes:)
        print(classification_report(y_test, answer_gnb))

四、支持向量机(SVM)

    from sklearn import svm  
      
    X = [[0, 0], [1, 1], [1, 0]]  # training samples   
    y = [0, 1, 1]  # training target  
    clf = svm.SVC()  # class   
    clf.fit(X, y)  # training the svc model  
      
    result = clf.predict([[2, 2]]) # predict the target of testing samples   
    print(result)  # target   
      
    print(clf.support_vectors_)  #support vectors  
      
    print(clf.support_)  # indeices of support vectors  
      
    print(clf.n_support_)  # number of support vectors for each class 

以上。

:)

 

中国mooc北京理工大学机器学习第二周(一):分类

标签:sam   span   参数   gauss   运动   nat   ica   tree   load   

原文地址:http://www.cnblogs.com/deleteme/p/6936392.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!