码迷,mamicode.com
首页 > 其他好文 > 详细

COCOS学习笔记--Cocos引擎渲染流程

时间:2017-06-03 16:14:11      阅读:991      评论:0      收藏:0      [点我收藏+]

标签:cal   shared   element   tty   tin   view   const   model   content   

近期在研究Cocos引擎的渲染流程。在这里将其整个渲染流程进行一下梳理:

梳理之前我们要知道一些东西,就是我们的Cocos引擎是通过使用OpenGL的一些API来进行渲染绘制的,所以假设我们要彻底理解Cocos引擎的渲染流程并想改动引擎底层渲染的相关内容,熟悉OpenGL是非常有必要的。

这里先简单说一下大概流程,Cocos3.x版本号的渲染是将全部须要渲染的node先通过各种RenderCommand封装起来,你先不用管RenderCommand是什么,仅仅须要记住它把我们要渲染的node封装起来了即可。然后引擎把这些RenderCommand加入到了一个队列中存了起来,这个队列叫CommandQueue,加入的时候顺便对这些RenderCommand设置了一些參数。最后在每一帧结束时调用进行渲染,渲染前会依据ID对RenderCommand进行排序,然后再进行渲染。

技术分享

 

 

好了接下来我们来開始梳理引擎整个的渲染流程了:

首先。整个project的渲染流程的入口在哪里呢?

我们打开project文件文件夹,在 platform\win32文件文件夹下找到CCApplication-win3类文件,这里要注意不同平台的不一样,比方mac平台下是platform\mac文件夹下的CCApplication-mac文件,依据我们公布的project平台的不同。这个CCApplication类文件也不同。整个渲染流程就在这个CCApplication类文件run()方法中開始。代码例如以下:

int Application::run()
{   
    ......       
    director->mainLoop();//进入引擎的主循环
    ......    
    return 0;
}

这里我们要了解一个概念,就是cocos2dx整个project是执行在一个单线程里的。也就是我们常常说的主线程,在主线程里完毕渲染、相关的定时器等等处理。

注意Application::run()中的这句:

director->mainLoop();

这句代码就是进入cocos2d-x的主循环了,这个主循环mainLoop()由导演负责维护。主线程mainloop()会不停地运行。理想状态下每秒会调用60次。

那我们看看CCDirector类里的mainLoop()方法详细做了些什么:

void DisplayLinkDirector::mainLoop()
{
    if (_purgeDirectorInNextLoop)//进入下一个主循环,也就是结束这次的主循环,就净化。也就是一些后期处理 
    {
        _purgeDirectorInNextLoop = false;
        purgeDirector();
    }
    else if (_restartDirectorInNextLoop)
    {
        _restartDirectorInNextLoop = false;
        restartDirector();
    }
    else if (! _invalid)
    {
        drawScene();//绘制屏幕
        PoolManager::getInstance()->getCurrentPool()->clear();//释放一些没实用的对象,主要保件内存的合理管理 
    }
}

最開始我还疑惑为什么mainLoop()方法的类是DisplayLinkDirector而不是CCDirector。可是在CCDirector.cpp中我们会找到例如以下代码:

static DisplayLinkDirector *s_SharedDirector = nullptr;
Director* Director::getInstance()
{
    if (!s_SharedDirector)
    {
        s_SharedDirector = new (std::nothrow) DisplayLinkDirector();
        CCASSERT(s_SharedDirector, "FATAL: Not enough memory");
        s_SharedDirector->init();
    }
 
    return s_SharedDirector;
}

我们能够看到Director类返回的单例对象是一个DisplayLinkDirector类型的。所以这个导演实例要运行mainLoop()方法,这种方法自然是DisplayLinkDirector类里的方法啦。

可是这是不是说明Director类就是DisplayLinkDirector类或继承自DisplayLinkDirector类呢?千万不要这样想!这两个类没有半毛钱关系,我们在CCDirector.h中看到例如以下代码:

class CC_DLL Director : public Ref

能够看出Director类是继承自Ref类的,仅仅是通过getInstance()方法返回的导演类的实例对象是DisplayLinkDirector类型的,CCDisplayLinkDirector类是CCDisplay的子类。从命名就应该能够非常清晰的知道它的用处。这里尽管有点绕。但不要混淆哈!


好了,回过头来,在DisplayLinkDirector::mainLoop()方法中我能够看到这句代码:

void DisplayLinkDirector::mainLoop()
{
    ......
    drawScene();
    ......
}

mainloop()假设运行会调用drawScene(),通过drawScene()代码就能够实现场景的绘制了。

那我们继续看看drawScene()详细做了些什么:

void Director::drawScene()
{
    ......
    if (_notificationNode)
   {
        _notificationNode->visit(_renderer, Mat4::IDENTITY, 0);
   }
    ......
    _renderer->render();
}

Director::drawScene()做了好多事情。其它的先不看。我们主要关注这两句:

1._notificationNode->visit(_renderer, Mat4::IDENTITY, 0);

2._renderer->render();

先看第一句。这句_notificationNode->visit(_renderer, Mat4::IDENTITY, 0) ,这句事实上是进入了一个循环调用。详细要看CCNode.cpp

void Node::visit(Renderer* renderer, const Mat4 &parentTransform, uint32_t parentFlags)
{
   	...... 
        for( ; i < _children.size(); i++ )
        {
            auto node = _children.at(i);
 
            if (node && node->_localZOrder < 0)
                node->visit(renderer, _modelViewTransform, flags);
            else
                break;
        }
        ......
        this->draw(renderer, _modelViewTransform, flags);
        ......
}

这个函数有一个循环调用,我们能够看到auto node = _children.at(i);和node->visit(renderer, _modelViewTransform, flags);。这段代码的意思是先获取子节点。然后递归调用节点的visit()函数,到了没有子节点的节点,运行了这句this->draw(renderer, _modelViewTransform, flags)。開始调用draw()函数,那么我们接着看draw()函数代码:

void Node::draw(Renderer* renderer, const Mat4 &transform, uint32_t flags)
{
}

里面什么都没有啊,这是怎么回事?事实上这个draw()函数是个虚函数。所以它运行时运行的是该子节点类的draw()函数。那么我们分别看DrawNode::draw()Sprite::draw()

void DrawNode::draw(Renderer *renderer, const Mat4 &transform, uint32_t flags)
{
    if(_bufferCount)
    {
        ......
        renderer->addCommand(&_customCommand);
    }
    if(_bufferCountGLPoint)
    {
        ......
        renderer->addCommand(&_customCommandGLPoint);
    }
    
    if(_bufferCountGLLine)
    {
        ......
        renderer->addCommand(&_customCommandGLLine);
    }
}

void Sprite::draw(Renderer *renderer, const Mat4 &transform, uint32_t flags)
{
......
    if(_insideBounds)
{
    ......
        renderer->addCommand(&_trianglesCommand);
    }
}

我们能够看到在在这些子类的draw()函数都运行了renderer->addCommand()代码。这是向RenderQueue中加入RenderCommand,在加入时顺便对RenderCommand进行了一些參数设置。当然有的类的draw()不是向RenderQueue中加入RenderCommand,而是直接使用OpenGL的API直接进行渲染。或者做一些其它的事情。


当Director::drawScene()循环调用全然部子节点的visit()方法而且运行完draw()方法,即向RenderQueue中加入完RenderCommand后,我们就看看接下来进行渲染的Renderer::render() 函数都做了些什么:

void Renderer::render()
{
    _isRendering = true;
    
    if (_glViewAssigned)
    {
        for (auto &renderqueue : _renderGroups)
        {
            renderqueue.sort();
        }
        visitRenderQueue(_renderGroups[0]);
    }
    clean();
    _isRendering = false;
}

看到“renderqueue.sort()"。这是依据ID先对全部RenderCommand进行排序,然后才进行渲染,“visitRenderQueue( _renderGroups[0])”就是来进行渲染的。

那么我们接着看看void Renderer::visitRenderQueue(const RenderQueue& queue)的代码:

void Renderer::visitRenderQueue(RenderQueue& queue)
{
    queue.saveRenderState();
    const auto& zNegQueue = queue.getSubQueue(RenderQueue::QUEUE_GROUP::GLOBALZ_NEG);
    if (zNegQueue.size() > 0)
    {
        if(_isDepthTestFor2D)
        {
            glEnable(GL_DEPTH_TEST);
            glDepthMask(true);
            glEnable(GL_BLEND);
            RenderState::StateBlock::_defaultState->setDepthTest(true);
            RenderState::StateBlock::_defaultState->setDepthWrite(true);
            RenderState::StateBlock::_defaultState->setBlend(true);
        }
        else
        {
            glDisable(GL_DEPTH_TEST);
            glDepthMask(false);
            glEnable(GL_BLEND);
            RenderState::StateBlock::_defaultState->setDepthTest(false);
            RenderState::StateBlock::_defaultState->setDepthWrite(false);
            RenderState::StateBlock::_defaultState->setBlend(true);
        }
        for (auto it = zNegQueue.cbegin(); it != zNegQueue.cend(); ++it)
        {
            processRenderCommand(*it);
        }
        flush();
}

在visitRenderQueue()方法中我我们看到这一行代码:

processRenderCommand(*it);

这是干什么的呢?这句代码就是进一步进入渲染流程的,我们看一下processRenderCommand()它做了什么:

void Renderer::processRenderCommand(RenderCommand* command)
{
    auto commandType = command->getType();
    if( RenderCommand::Type::TRIANGLES_COMMAND == commandType)
    {
         ......
    	 drawBatchedTriangles();
         ......
    }
    else if ( RenderCommand::Type::QUAD_COMMAND == commandType )
    {
        ......
        drawBatchedQuads();
        ......
    }
    else if (RenderCommand::Type::MESH_COMMAND == commandType)
    {
        ......
        auto cmd = static_cast<MeshCommand*>(command);
        ......
        cmd->execute();
        ......
    }
    ......
}

我们能够看到,在这里,依据渲染类型的不同。会调用不同的函数。这些函数里有OpenGL的API,没错,这些函数来进行渲染的。比方TRIANGLES_COMMAND类型中调用了drawBatchedTriangles()。QUAD_COMMAND类型中调用了drawBatchedQuads()。MESH_COMMAND类型中调用了MeshCommand::execute(),等等。

举个样例,我们来看下drawBatchedTriangles()方法

void Renderer::drawBatchedTriangles()
{
    ......
    if (Configuration::getInstance()->supportsShareableVAO())
    {
        ......}
    else
    {
        ......
        // vertices
        glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_POSITION, 3, GL_FLOAT, GL_FALSE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, vertices));
 
        // colors
        glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, colors));
 
        // tex coords
        glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_TEX_COORD, 2, GL_FLOAT, GL_FALSE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, texCoords));
 
        glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _buffersVBO[1]);
        glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(_indices[0]) * _filledIndex, _indices, GL_STATIC_DRAW);
      }
       ......
}

能够看到该方法中调用了非常多OpenGL的API,这些方法就是整个渲染流程最后进行渲染的环节。

 

好了,以上便是Cocos引擎的整个的渲染流程了。

最后用一个流程图对以上内容做一下总结。话说这张图我真的是非常用心画的,改了好多遍最后优化到如今这个样子给大家看,希望对大家有帮助:

技术分享

 

 

 

 

 

 

 

 

以上。

 

 

 

 

 

 

 

COCOS学习笔记--Cocos引擎渲染流程

标签:cal   shared   element   tty   tin   view   const   model   content   

原文地址:http://www.cnblogs.com/jzdwajue/p/6937287.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!