码迷,mamicode.com
首页 > 其他好文 > 详细

小红帽的画笔(NOIP模拟赛Round 7)

时间:2017-06-03 16:18:26      阅读:252      评论:0      收藏:0      [点我收藏+]

标签:round   sig   names   sum   code   swa   size   sign   else   

又到了神奇的模拟赛时间~

真是丧~

好吧我们来看看题目

小红帽是Pop star上最著名的人类画家,她可以将任何画出的东西变成真实的物品。赋予她这样神奇能力的正是她手上的画笔。

小红帽每次作画时,都需要用到她的调色盘,我们把每个自然数都对应一种颜色,那么小红帽的调色盘就可以看成是一个斐波那契数列(数列第12项都为1,小红帽每次需要一种颜色时,她都会用画笔蘸取一段区间,得到的颜色就是区间里所有的数之和。

受到秋之国人民的邀请,小红帽要为他们画一个夏天。小红帽要进行n次取色,给出每次蘸取的区间[l,r],作为小C委派来进行记录的你需要输出每次小红帽得到的颜色,答案对mod取模

【数据范围】

对于10%的数据,n<=100,l,r<=10^4;

对于30%的数据,l,r<=10^7;

对于90%的数据,mod<=10^9;

对于100%的数据,0<=n<=1000,1<=l<=r<=10^18,0<mod<=10^18。

————————————————我是分割线————————————————————

很显然,这道题目就是求斐波那契数列前r项的前缀和减去前l-1项的前缀和,普通的DP都可以做到求斐波那契数列,但是很显然10^18我们就会T

在此我们讲讲矩阵乘法

矩阵乘法,顾名思义,就是2个矩阵相乘。具体如下

 技术分享

所以呢我们如果要算斐波那契数列的第N项只需要将图中的技术分享矩阵自乘n-2次,再乘第一个矩阵,得到的矩阵的第一个数就是答案

那么我们又怎样求前缀和呢?

在此有两种方法供参考

TOP1:找规律

我们假设a,b为斐波那契数列的第一项和第二项

那么我们很显然就可以递推出后面的几项

技术分享

那么这有什么规律呢?

很快就发现了规律

a=a+b-b;a+b=a+2b-b;2a+2b=2a+3b-b;3a+4b=3a+5b-b.....

所以我们只需要求num[r+2]-1-(num[l-1+r]-1)=num[r+2]-num[l-1]即可啦

TOP2:构造矩阵

显然我们知道我们要保留答案矩阵的前面2个数,而我们想办法构造出第三个数,用于计算前缀和。这样将这个矩阵自乘n-2次,输出第三个数就好啦。

然后我们会想到我们的前缀和就是sum[i]=sum[i-1]+num[i];

然后就会构造出这个矩阵啦技术分享

———————————————我是分割线—————————————————

那么我们还看到一个问题,如何处理mod?

我们知道如果mod为10^18

那么一次乘法操作的数会达到10^36

如果是这样我们就需要做高精除+高精乘了。

但是有没有更快的方法?

首先我们知道如果在加法中进行取余,结果不改变。

所以我们将乘法转变为加法

这样速度虽然慢了点,却不会爆long long

然后这道题就愉快解决啦!

下面贴代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n;
struct matrix{
    unsigned long long mat[2][2];
};
unsigned long long l,r,mod;
long long mul(long long x,long long y)
{
    if (x<y) swap(x,y);
    register long long z=0;
    for (;y;y>>=1,x<<=1,x=x>=mod?x-mod:x) if (y&1) z+=x,z=z>=mod?z-mod:z;
    return z;
}
matrix multiply(matrix a,matrix b)
{
    unsigned long long sum=0;
    matrix c;
    memset(c.mat,0,sizeof(c.mat));
    for(int i=0;i<=1;i++)
        for(int j=0;j<=1;j++)
        {
            sum=0;
            for(int k=0;k<=1;k++)
            {
                long long numqq=mul(a.mat[i][k],b.mat[k][j]);
                if(mod>1000000000)sum+=numqq,sum%=mod;
                else sum+=(a.mat[i][k]*b.mat[k][j])%mod;
            }
            c.mat[i][j]=sum;
        }
    return c;    
} 
matrix matmod(matrix a,unsigned long long k)
{
    matrix res;
    memset(res.mat,0,sizeof(res.mat));
    for(int i=0;i<=1;i++)res.mat[i][i]=1;
    while(k)
    {
        if(k&1)res=multiply(res,a);
        k>>=1;
        a=multiply(a,a);
    }
    return res;
}
unsigned long long work(unsigned long long x)
{
    if(x==0)return 0;
    if(x==1)return 1;
    if(x==2)return 2;
    matrix a,b;
    memset(a.mat,0,sizeof(a.mat));
    memset(b.mat,0,sizeof(b.mat));
    for(int i=0;i<=1;i++)a.mat[i][1]=1;
    for(int i=0;i<=1;i++)b.mat[i][0]=1;
    a.mat[1][0]=1; 
    a=matmod(a,x);
    a=multiply(a,b);
    return (a.mat[1][0]-1+mod)%mod;
} 
int main(){
    freopen("artist.in","r",stdin);
    freopen("artist.out","w",stdout);
    scanf("%d%lld",&n,&mod);
    for(int i=1;i<=n;i++)
    {
        scanf("%lld%lld",&l,&r);
        unsigned long long num1=0,num2=0;
        num1=work(l-1);
        num2=work(r);
        unsigned long long ans=num2-num1+mod;
        printf("%lld\n",ans%mod); 
    }
    return 0;
    fclose(stdin);
    fclose(stdout);
} 

 

小红帽的画笔(NOIP模拟赛Round 7)

标签:round   sig   names   sum   code   swa   size   sign   else   

原文地址:http://www.cnblogs.com/ghostfly233/p/6937411.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!