码迷,mamicode.com
首页 > 其他好文 > 详细

堆 续2

时间:2017-06-05 22:11:23      阅读:211      评论:0      收藏:0      [点我收藏+]

标签:mat   方式   cas   assert   ring   优化   不能   str   swa   

---------------------siwuxie095

   

   

   

   

   

   

   

   

索引从 1 开始

   

   

程序 1:最大堆的实现

   

MaxHeap.h:

   

#ifndef MAXHEAP_H

#define MAXHEAP_H

   

#include <iostream>

#include <algorithm>

#include <string>

#include <cmath>

#include <cassert>

using namespace std;

   

   

   

//最大堆:索引从1开始

template<typename Item>

class MaxHeap

{

   

private:

Item *data;

int count;

int capacity;

   

   

//私有函数,用户不能调用

void shiftUp(int k)

{

//如果新添加的元素大于父节点的元素,则进行交换

while (k > 1 && data[k / 2] < data[k])

{

swap(data[k / 2], data[k]);

k /= 2;

}

}

   

   

//也是私有函数,用户不能调用

void shiftDown(int k)

{

//只要当前节点有孩子就进行循环

while (2 * k <= count)

{

// 在此轮循环中,data[k]data[j]交换位置

int j = 2 * k;

   

// data[j]data[2*k]data[2*k+1]中的最大值

if (j + 1 <= count && data[j + 1] > data[j])

{

j++;

}

   

if (data[k] >= data[j])

{

break;

}

   

swap(data[k], data[j]);

k = j;

}

}

   

   

public:

   

MaxHeap(int capacity)

{

//因为存储时是从索引1开始的,所以要加1

// 多开辟一个空间

data = new Item[capacity + 1];

//计数器,这里索引等于计数器

count = 0;

this->capacity = capacity;

}

   

   

~MaxHeap()

{

delete []data;

}

   

   

int size()

{

return count;

}

   

   

bool isEmpty()

{

return count == 0;

}

   

   

//向最大堆中添加新元素,新元素放在数组末尾

void insert(Item item)

{

//防止越界

assert(count + 1 <= capacity);

   

//索引从1开始

data[count + 1] = item;

count++;

   

//新加入的元素有可能破坏最大堆的定义,需要通过

//Shift Up操作,把索引为count的元素尝试着向上

//移动来保持最大堆的定义

shiftUp(count);

}

   

   

//取出最大堆中根节点的元素(最大值)

Item extractMax()

{

//首先要保证堆不为空

assert(count > 0);

   

//取出根节点的元素(最大值)

Item ret = data[1];

   

//将第一个元素(最大值)和最后一个元素进行交换

swap(data[1], data[count]);

   

//count--后,被取出的根节点就不用再考虑了

count--;

   

//调用Shift Down操作,想办法将此时的根节点(索引为1

//向下移动,来保持最大堆的定义

shiftDown(1);

   

return ret;

}

   

   

public:

   

//在控制台打印测试用例

void testPrint()

{

   

//限制:只能打印100个元素以内的堆,因为控制台一行的字符数量有限

if (size() >= 100)

{

cout << "Fancy print can only work for less than 100 int";

return;

}

   

//限制:只能打印类型是int的堆

if (typeid(Item) != typeid(int))

{

cout << "Fancy print can only work for int item";

return;

}

   

cout << "The Heap size is: " << size() << endl;

cout << "data in heap: ";

for (int i = 1; i <= size(); i++)

{

cout << data[i] << " ";

}

cout << endl;

cout << endl;

   

int n = size();

int max_level = 0;

int number_per_level = 1;

while (n > 0)

{

max_level += 1;

n -= number_per_level;

number_per_level *= 2;

}

   

int max_level_number = int(pow(2, max_level - 1));

int cur_tree_max_level_number = max_level_number;

int index = 1;

for (int level = 0; level < max_level; level++)

{

string line1 = string(max_level_number * 3 - 1, ‘ ‘);

   

int cur_level_number = min(count - int(pow(2, level)) + 1,

int(pow(2, level)));

   

bool isLeft = true;

   

for (int index_cur_level = 0; index_cur_level < cur_level_number;

index++, index_cur_level++)

{

putNumberInLine(data[index], line1, index_cur_level,

cur_tree_max_level_number * 3 - 1, isLeft);

   

isLeft = !isLeft;

}

cout << line1 << endl;

   

   

if (level == max_level - 1)

{

break;

}

   

   

string line2 = string(max_level_number * 3 - 1, ‘ ‘);

for (int index_cur_level = 0; index_cur_level < cur_level_number;

index_cur_level++)

{

putBranchInLine(line2, index_cur_level, cur_tree_max_level_number * 3 - 1);

}

   

cout << line2 << endl;

   

cur_tree_max_level_number /= 2;

}

}

   

   

   

private:

   

void putNumberInLine(int num, string &line, int index_cur_level,

int cur_tree_width, bool isLeft)

{

   

int sub_tree_width = (cur_tree_width - 1) / 2;

   

int offset = index_cur_level * (cur_tree_width + 1) + sub_tree_width;

   

assert(offset + 1 < line.size());

   

if (num >= 10)

{

line[offset + 0] = ‘0‘ + num / 10;

line[offset + 1] = ‘0‘ + num % 10;

}

else

{

if (isLeft)

line[offset + 0] = ‘0‘ + num;

else

line[offset + 1] = ‘0‘ + num;

}

}

   

   

void putBranchInLine(string &line, int index_cur_level, int cur_tree_width)

{

   

int sub_tree_width = (cur_tree_width - 1) / 2;

   

int sub_sub_tree_width = (sub_tree_width - 1) / 2;

   

int offset_left = index_cur_level * (cur_tree_width + 1) + sub_sub_tree_width;

   

assert(offset_left + 1 < line.size());

   

int offset_right = index_cur_level * (cur_tree_width + 1) + sub_tree_width

+ 1 + sub_sub_tree_width;

   

assert(offset_right < line.size());

   

line[offset_left + 1] = ‘/‘;

line[offset_right + 0] = \\;

}

};

   

   

   

#endif

   

   

   

main.cpp:

   

#include "MaxHeap.h"

#include <ctime>

   

   

int main()

{

   

MaxHeap<int> maxheap = MaxHeap<int>(100);

   

srand(time(NULL));

for (int i = 0; i < 15; i++)

{

maxheap.insert(rand() % 100);

}

   

maxheap.testPrint();

   

cout << endl;

while (!maxheap.isEmpty())

{

cout << maxheap.extractMax() << " ";

}

cout << endl;

   

system("pause");

return 0;

}

   

   

运行一览:

   

技术分享

   

   

   

   

   

   

   

程序 2:最大堆的优化

   

MaxHeap.h:

   

#ifndef MAXHEAP_H

#define MAXHEAP_H

   

#include <iostream>

#include <algorithm>

#include <string>

#include <cmath>

#include <cassert>

using namespace std;

   

   

   

//最大堆:索引从1开始

template<typename Item>

class MaxHeap

{

   

private:

Item *data;

int count;

int capacity;

   

   

//私有函数,用户不能调用

//使用插入排序的优化方式进行优化

void shiftUp(int k)

{

//如果新添加的元素大于父节点的元素,则进行交换

Item e = data[k];

while (k > 1 && data[k / 2] < e)

{

data[k] = data[k / 2];

k /= 2;

}

data[k] = e;

}

   

   

//也是私有函数,用户不能调用

//使用插入排序的优化方式进行优化

void shiftDown(int k)

{

Item e = data[k];

//只要当前节点有孩子就进行循环

while (2 * k <= count)

{

// 在此轮循环中,data[k]data[j]交换位置

int j = 2 * k;

   

// data[j]data[2*k]data[2*k+1]中的最大值

if (j + 1 <= count && data[j + 1] > data[j])

{

j++;

}

   

if (e >= data[j])

{

break;

}

   

data[k] = data[j];

k = j;

}

data[k] = e;

}

   

   

public:

   

MaxHeap(int capacity)

{

//因为存储时是从索引1开始的,所以要加1

// 多开辟一个空间

data = new Item[capacity + 1];

//计数器,这里索引等于计数器

count = 0;

this->capacity = capacity;

}

   

   

MaxHeap(Item arr[], int n)

{

data = new Item[n + 1];

capacity = n;

   

for (int i = 0; i < n; i++)

{

data[i + 1] = arr[i];

}

   

count = n;

   

//从最后一个非叶子节点的位置开始

for (int i = count / 2; i >= 1; i--)

{

//每次对索引为i的元素进行Shift Down操作

shiftDown(i);

}

   

}

   

   

~MaxHeap()

{

delete []data;

}

   

   

int size()

{

return count;

}

   

   

bool isEmpty()

{

return count == 0;

}

   

   

//向最大堆中添加新元素,新元素放在数组末尾

void insert(Item item)

{

//防止越界

assert(count + 1 <= capacity);

   

//索引从1开始

data[count + 1] = item;

count++;

   

//新加入的元素有可能破坏最大堆的定义,需要通过

//Shift Up操作,把索引为count的元素尝试着向上

//移动来保持最大堆的定义

shiftUp(count);

}

   

   

//取出最大堆中根节点的元素(最大值)

Item extractMax()

{

//首先要保证堆不为空

assert(count > 0);

   

//取出根节点的元素(最大值)

Item ret = data[1];

   

//将第一个元素(最大值)和最后一个元素进行交换

swap(data[1], data[count]);

   

//count--后,被取出的根节点就不用再考虑了

count--;

   

//调用Shift Down操作,想办法将此时的根节点(索引为1

//向下移动,来保持最大堆的定义

shiftDown(1);

   

return ret;

}

   

   

public:

   

//在控制台打印测试用例

void testPrint()

{

   

//限制:只能打印100个元素以内的堆,因为控制台一行的字符数量有限

if (size() >= 100)

{

cout << "Fancy print can only work for less than 100 int";

return;

}

   

//限制:只能打印类型是int的堆

if (typeid(Item) != typeid(int))

{

cout << "Fancy print can only work for int item";

return;

}

   

cout << "The Heap size is: " << size() << endl;

cout << "data in heap: ";

for (int i = 1; i <= size(); i++)

{

cout << data[i] << " ";

}

cout << endl;

cout << endl;

   

int n = size();

int max_level = 0;

int number_per_level = 1;

while (n > 0)

{

max_level += 1;

n -= number_per_level;

number_per_level *= 2;

}

   

int max_level_number = int(pow(2, max_level - 1));

int cur_tree_max_level_number = max_level_number;

int index = 1;

for (int level = 0; level < max_level; level++)

{

string line1 = string(max_level_number * 3 - 1, ‘ ‘);

   

int cur_level_number = min(count - int(pow(2, level)) + 1,

int(pow(2, level)));

   

bool isLeft = true;

   

for (int index_cur_level = 0; index_cur_level < cur_level_number;

index++, index_cur_level++)

{

putNumberInLine(data[index], line1, index_cur_level,

cur_tree_max_level_number * 3 - 1, isLeft);

   

isLeft = !isLeft;

}

cout << line1 << endl;

   

if (level == max_level - 1)

{

break;

}

   

   

string line2 = string(max_level_number * 3 - 1, ‘ ‘);

for (int index_cur_level = 0; index_cur_level < cur_level_number;

index_cur_level++)

{

putBranchInLine(line2, index_cur_level, cur_tree_max_level_number * 3 - 1);

}

   

cout << line2 << endl;

   

cur_tree_max_level_number /= 2;

}

}

   

   

   

private:

   

void putNumberInLine(int num, string &line, int index_cur_level,

int cur_tree_width, bool isLeft)

{

   

int sub_tree_width = (cur_tree_width - 1) / 2;

   

int offset = index_cur_level * (cur_tree_width + 1) + sub_tree_width;

   

assert(offset + 1 < line.size());

   

if (num >= 10)

{

line[offset + 0] = ‘0‘ + num / 10;

line[offset + 1] = ‘0‘ + num % 10;

}

else

{

if (isLeft)

line[offset + 0] = ‘0‘ + num;

else

line[offset + 1] = ‘0‘ + num;

}

}

   

   

void putBranchInLine(string &line, int index_cur_level, int cur_tree_width)

{

   

int sub_tree_width = (cur_tree_width - 1) / 2;

   

int sub_sub_tree_width = (sub_tree_width - 1) / 2;

   

int offset_left = index_cur_level * (cur_tree_width + 1) + sub_sub_tree_width;

   

assert(offset_left + 1 < line.size());

   

int offset_right = index_cur_level * (cur_tree_width + 1) + sub_tree_width

+ 1 + sub_sub_tree_width;

   

assert(offset_right < line.size());

   

line[offset_left + 1] = ‘/‘;

line[offset_right + 0] = \\;

}

};

   

   

   

#endif

   

   

   

main.cpp:

   

#include "MaxHeap.h"

#include <ctime>

   

   

int main()

{

   

MaxHeap<int> maxheap = MaxHeap<int>(100);

 

srand(time(NULL));

for (int i = 0; i < 15; i++)

{

maxheap.insert(rand() % 100);

}

 

maxheap.testPrint();

 

cout << endl;

while (!maxheap.isEmpty())

{

cout << maxheap.extractMax() << " ";

}

cout << endl;

   

   

/*cout << endl;

int arr[15];

for (int i = 0; i < 15; i++)

{

arr[i] = rand() % 100;

}

MaxHeap<int> maxheapx = MaxHeap<int>(arr, 15);

maxheapx.testPrint();

cout << endl;

while (!maxheapx.isEmpty())

{

cout << maxheapx.extractMax() << " ";

}

cout << endl;*/

   

system("pause");

return 0;

}

   

   

运行一览:

   

技术分享

   

   

   

   

   

   

   

程序 3:最小堆的实现

   

MinHeap.h:

   

#ifndef MINHEAP_H

#define MINHEAP_H

   

#include <iostream>

#include <algorithm>

#include <string>

#include <cmath>

#include <cassert>

using namespace std;

   

   

   

//最小堆:索引从1开始

template<typename Item>

class MinHeap

{

   

private:

Item *data;

int count;

int capacity;

   

   

//私有函数,用户不能调用

void shiftUp(int k)

{

//如果新添加的元素小于父节点的元素,则进行交换

while (k > 1 && data[k / 2] > data[k])

{

swap(data[k / 2], data[k]);

k /= 2;

}

}

   

   

//也是私有函数,用户不能调用

void shiftDown(int k)

{

//只要当前节点有孩子就进行循环

while (2 * k <= count)

{

// 在此轮循环中,data[k]data[j]交换位置

int j = 2 * k;

   

// data[j]data[2*k]data[2*k+1]中的最小值

if (j + 1 <= count && data[j + 1] < data[j])

{

j++;

}

   

if (data[k] <= data[j])

{

break;

}

   

swap(data[k], data[j]);

k = j;

}

}

   

   

public:

   

MinHeap(int capacity)

{

//因为存储时是从索引1开始的,所以要加1

// 多开辟一个空间

data = new Item[capacity + 1];

//计数器,这里索引等于计数器

count = 0;

this->capacity = capacity;

}

   

   

~MinHeap()

{

delete []data;

}

   

   

int size()

{

return count;

}

   

   

bool isEmpty()

{

return count == 0;

}

   

   

//向最小堆中添加新元素,新元素放在数组末尾

void insert(Item item)

{

//防止越界

assert(count + 1 <= capacity);

   

//索引从1开始

data[count + 1] = item;

count++;

   

//新加入的元素有可能破坏最小堆的定义,需要通过

//Shift Up操作,把索引为count的元素尝试着向上

//移动来保持最小堆的定义

shiftUp(count);

}

   

   

//取出最小堆中根节点的元素(最小值)

Item extractMin()

{

//首先要保证堆不为空

assert(count > 0);

   

//取出根节点的元素(最小值)

Item ret = data[1];

   

//将第一个元素(最小值)和最后一个元素进行交换

swap(data[1], data[count]);

   

//count--后,被取出的根节点就不用再考虑了

count--;

   

//调用Shift Down操作,想办法将此时的根节点(索引为1

//向下移动,来保持最小堆的定义

shiftDown(1);

   

return ret;

}

   

   

public:

   

//在控制台打印测试用例

void testPrint()

{

   

//限制:只能打印100个元素以内的堆,因为控制台一行的字符数量有限

if (size() >= 100)

{

cout << "Fancy print can only work for less than 100 int";

return;

}

   

//限制:只能打印类型是int的堆

if (typeid(Item) != typeid(int))

{

cout << "Fancy print can only work for int item";

return;

}

   

cout << "The Heap size is: " << size() << endl;

cout << "data in heap: ";

for (int i = 1; i <= size(); i++)

{

cout << data[i] << " ";

}

cout << endl;

cout << endl;

   

int n = size();

int max_level = 0;

int number_per_level = 1;

while (n > 0)

{

max_level += 1;

n -= number_per_level;

number_per_level *= 2;

}

   

int max_level_number = int(pow(2, max_level - 1));

int cur_tree_max_level_number = max_level_number;

int index = 1;

for (int level = 0; level < max_level; level++)

{

string line1 = string(max_level_number * 3 - 1, ‘ ‘);

   

int cur_level_number = min(count - int(pow(2, level)) + 1,

int(pow(2, level)));

   

bool isLeft = true;

   

for (int index_cur_level = 0; index_cur_level < cur_level_number;

index++, index_cur_level++)

{

putNumberInLine(data[index], line1, index_cur_level,

cur_tree_max_level_number * 3 - 1, isLeft);

   

isLeft = !isLeft;

}

cout << line1 << endl;

   

if (level == max_level - 1)

{

break;

}

   

   

string line2 = string(max_level_number * 3 - 1, ‘ ‘);

for (int index_cur_level = 0; index_cur_level < cur_level_number;

index_cur_level++)

{

putBranchInLine(line2, index_cur_level, cur_tree_max_level_number * 3 - 1);

}

   

cout << line2 << endl;

   

cur_tree_max_level_number /= 2;

}

}

   

   

   

private:

   

void putNumberInLine(int num, string &line, int index_cur_level,

int cur_tree_width, bool isLeft)

{

   

int sub_tree_width = (cur_tree_width - 1) / 2;

   

int offset = index_cur_level * (cur_tree_width + 1) + sub_tree_width;

   

assert(offset + 1 < line.size());

   

if (num >= 10)

{

line[offset + 0] = ‘0‘ + num / 10;

line[offset + 1] = ‘0‘ + num % 10;

}

else

{

if (isLeft)

line[offset + 0] = ‘0‘ + num;

else

line[offset + 1] = ‘0‘ + num;

}

}

   

   

void putBranchInLine(string &line, int index_cur_level, int cur_tree_width)

{

   

int sub_tree_width = (cur_tree_width - 1) / 2;

   

int sub_sub_tree_width = (sub_tree_width - 1) / 2;

   

int offset_left = index_cur_level * (cur_tree_width + 1) + sub_sub_tree_width;

   

assert(offset_left + 1 < line.size());

   

int offset_right = index_cur_level * (cur_tree_width + 1) + sub_tree_width

+ 1 + sub_sub_tree_width;

   

assert(offset_right < line.size());

   

line[offset_left + 1] = ‘/‘;

line[offset_right + 0] = \\;

}

};

   

   

   

#endif

   

   

   

main.cpp:

   

#include "MinHeap.h"

#include <ctime>

   

   

int main()

{

   

MinHeap<int> minheap = MinHeap<int>(100);

   

srand(time(NULL));

for (int i = 0; i < 15; i++)

{

minheap.insert(rand() % 100);

}

   

minheap.testPrint();

   

cout << endl;

while (!minheap.isEmpty())

{

cout << minheap.extractMin() << " ";

}

cout << endl;

   

system("pause");

return 0;

}

   

   

运行一览:

   

技术分享

   

   

   

   

   

   

   

程序 4:最小堆的优化

   

MinHeap.h:

   

#ifndef MINHEAP_H

#define MINHEAP_H

   

#include <iostream>

#include <algorithm>

#include <string>

#include <cmath>

#include <cassert>

using namespace std;

   

   

   

//最小堆:索引从1开始

template<typename Item>

class MinHeap

{

   

private:

Item *data;

int count;

int capacity;

   

   

//私有函数,用户不能调用

//使用插入排序的优化方式进行优化

void shiftUp(int k)

{

Item e = data[k];

//如果新添加的元素小于父节点的值,

//则和父节点的值进行交换,即上升

while (k > 1 && data[k / 2] > e)

{

data[k] = data[k / 2];

k /= 2;

}

data[k] = e;

}

   

   

//也是私有函数,用户不能调用

//使用插入排序的优化方式进行优化

void shiftDown(int k)

{

Item e = data[k];

//只要当前节点有孩子就进行循环

while (2 * k <= count)

{

// 在此轮循环中,data[k]data[j]交换位置

int j = 2 * k;

   

// data[j]data[2*k]data[2*k+1]中的最小值

if (j + 1 <= count && data[j + 1] < data[j])

{

j++;

}

   

if (e <= data[j])

{

break;

}

   

data[k] = data[j];

k = j;

}

data[k] = e;

}

   

   

public:

   

MinHeap(int capacity)

{

//因为存储时是从索引1开始的,所以要加1

// 多开辟一个空间

data = new Item[capacity + 1];

//计数器,这里索引等于计数器

count = 0;

this->capacity = capacity;

}

   

   

MinHeap(Item arr[], int n)

{

data = new Item[n + 1];

capacity = n;

   

for (int i = 0; i < n; i++)

{

data[i + 1] = arr[i];

}

   

count = n;

   

//从最后一个非叶子节点的位置开始

for (int i = count / 2; i >= 1; i--)

{

//每次对索引为i的元素进行Shift Down操作

shiftDown(i);

}

   

}

   

   

~MinHeap()

{

delete []data;

}

   

   

int size()

{

return count;

}

   

   

bool isEmpty()

{

return count == 0;

}

   

   

//向最小堆中添加新元素,新元素放在数组末尾

void insert(Item item)

{

assert(count + 1 <= capacity);

   

//索引从1开始

data[count + 1] = item;

count++;

   

//新加入的元素有可能破坏最小堆的定义,需要通过

//Shift Up操作,把索引为count的元素尝试着向上

//移动来保持最小堆的定义

shiftUp(count);

}

   

   

//取出最小堆中根节点的元素(最小值)

Item extractMin()

{

//首先要保证堆不为空

assert(count > 0);

   

//取出根节点的元素(最小值)

Item ret = data[1];

   

//将第一个元素(最小值)和最后一个元素进行交换

swap(data[1], data[count]);

   

//count--后,被取出的根节点就不用再考虑了

count--;

   

//调用Shift Down操作,想办法将此时的根节点(索引为1

//向下移动,来保持最小堆的定义

shiftDown(1);

   

return ret;

}

   

   

public:

   

//在控制台打印测试用例

void testPrint()

{

   

//限制:只能打印100个元素以内的堆,因为控制台一行的字符数量有限

if (size() >= 100)

{

cout << "Fancy print can only work for less than 100 int";

return;

}

   

//限制:只能打印类型是int的堆

if (typeid(Item) != typeid(int))

{

cout << "Fancy print can only work for int item";

return;

}

   

cout << "The Heap size is: " << size() << endl;

cout << "data in heap: ";

for (int i = 1; i <= size(); i++)

{

cout << data[i] << " ";

}

cout << endl;

cout << endl;

   

int n = size();

int max_level = 0;

int number_per_level = 1;

while (n > 0)

{

max_level += 1;

n -= number_per_level;

number_per_level *= 2;

}

   

int max_level_number = int(pow(2, max_level - 1));

int cur_tree_max_level_number = max_level_number;

int index = 1;

for (int level = 0; level < max_level; level++)

{

string line1 = string(max_level_number * 3 - 1, ‘ ‘);

   

int cur_level_number = min(count - int(pow(2, level)) + 1,

int(pow(2, level)));

   

bool isLeft = true;

   

for (int index_cur_level = 0; index_cur_level < cur_level_number;

index++, index_cur_level++)

{

putNumberInLine(data[index], line1, index_cur_level,

cur_tree_max_level_number * 3 - 1, isLeft);

   

isLeft = !isLeft;

}

cout << line1 << endl;

   

if (level == max_level - 1)

{

break;

}

   

   

string line2 = string(max_level_number * 3 - 1, ‘ ‘);

for (int index_cur_level = 0; index_cur_level < cur_level_number;

index_cur_level++)

{

putBranchInLine(line2, index_cur_level, cur_tree_max_level_number * 3 - 1);

}

   

cout << line2 << endl;

   

cur_tree_max_level_number /= 2;

}

}

   

   

   

private:

   

void putNumberInLine(int num, string &line, int index_cur_level,

int cur_tree_width, bool isLeft)

{

   

int sub_tree_width = (cur_tree_width - 1) / 2;

   

int offset = index_cur_level * (cur_tree_width + 1) + sub_tree_width;

   

assert(offset + 1 < line.size());

   

if (num >= 10)

{

line[offset + 0] = ‘0‘ + num / 10;

line[offset + 1] = ‘0‘ + num % 10;

}

else

{

if (isLeft)

line[offset + 0] = ‘0‘ + num;

else

line[offset + 1] = ‘0‘ + num;

}

}

   

   

void putBranchInLine(string &line, int index_cur_level, int cur_tree_width)

{

   

int sub_tree_width = (cur_tree_width - 1) / 2;

   

int sub_sub_tree_width = (sub_tree_width - 1) / 2;

   

int offset_left = index_cur_level * (cur_tree_width + 1) + sub_sub_tree_width;

   

assert(offset_left + 1 < line.size());

   

int offset_right = index_cur_level * (cur_tree_width + 1) + sub_tree_width

+ 1 + sub_sub_tree_width;

   

assert(offset_right < line.size());

   

line[offset_left + 1] = ‘/‘;

line[offset_right + 0] = \\;

}

};

   

   

   

#endif

   

   

   

main.cpp:

   

#include "MinHeap.h"

#include <ctime>

   

   

int main()

{

   

MinHeap<int> minheap = MinHeap<int>(100);

   

srand(time(NULL));

for (int i = 0; i < 15; i++)

{

minheap.insert(rand() % 100);

}

   

minheap.testPrint();

   

cout << endl;

while (!minheap.isEmpty())

{

cout << minheap.extractMin() << " ";

}

cout << endl;

   

   

/*cout << endl;

int arr[15];

for (int i = 0; i < 15; i++)

{

arr[i] = rand() % 100;

}

MinHeap<int> minheapx = MinHeap<int>(arr, 15);

minheapx.testPrint();

cout << endl;

while (!minheapx.isEmpty())

{

cout << minheapx.extractMin() << " ";

}

cout << endl;*/

   

system("pause");

return 0;

}

   

   

运行一览:

   

技术分享

   

   

   

   

   

   

   

   

   

   

【made by siwuxie095】

堆 续2

标签:mat   方式   cas   assert   ring   优化   不能   str   swa   

原文地址:http://www.cnblogs.com/siwuxie095/p/6947041.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!