标签:idt between puts iss log text second 问题 lines
Time Limit: 1000MS | Memory Limit: 32768K | |
Total Submissions: 7731 | Accepted: 1723 |
Description
Input
Output
Sample Input
22 3 7 0 1 2 1 1
Sample Output
110 0
Source
题目大意:给你一个在0至4999之间的数N,在给你M个数,输出这些数能组成的最小的N的倍数,没有输出0
试题分析:本体盲目搜是不可取的,因为我们根本就不知道要搜到哪里(对于DFS),每个数的数量可以取无限多个……
那么对于BFS来说数量还是比较多,但BFS擅长解决一些没有边界的问题嘛,所以用BFS解决此题
那么如何剪枝呢?
对于一个数(AX+Y)%X与(BX+Y)%X的余数是一样的,至于取谁,小的那个(也就是先搜到的那个)是我们要的,大的可以直接剪掉,所以只需要开一个数组Hash一下就好了……
注意特判N=0的情况!!!
代码
#include<iostream> #include<cstring> #include<cstdio> #include<queue> #include<stack> #include<vector> #include<algorithm> //#include<cmath> using namespace std; const int INF = 9999999; #define LL long long inline int read(){ int x=0,f=1;char c=getchar(); for(;!isdigit(c);c=getchar()) if(c==‘-‘) f=-1; for(;isdigit(c);c=getchar()) x=x*10+c-‘0‘; return x*f; } int N,M; int a[5101]; int l=1,r=1; bool flag[5101]; bool fla=false; struct data{ int ga,last,ans; }Que[5101]; void print(data k){ if(k.ga!=-1){ print(Que[k.ga]); printf("%d",k.ans); } } void BFS(){//a当前数字 Que[1].last=0; Que[1].ans=0; Que[1].ga=-1; int l1,p; while(l<=r){ l1=Que[l].last; for(int i=1;i<=M;i++){ p=(l1*10+a[i])%N; if(!flag[p]&&(Que[l].ga!=-1||a[i]>0)){ flag[p]=true; Que[++r].ans=a[i]; Que[r].ga=l; Que[r].last=p; if(p==0){ data s=Que[r]; print(s); printf("\n"); fla=true; return ; } } } l++; } } int main(){ //freopen(".in","r",stdin); //freopen(".out","w",stdout); while(scanf("%d",&N)!=EOF){ M=read(); for(int i=1;i<=M;i++) a[i]=read(); sort(a+1,a+M+1); if(N==0){ puts("0"); continue; } memset(flag,false,sizeof(flag)); l=r=1; fla=false; BFS(); if(!fla){ puts("0"); } } return 0; }
标签:idt between puts iss log text second 问题 lines
原文地址:http://www.cnblogs.com/wxjor/p/6958734.html