标签:位置 大于 速度 理论 变量 并且 自定义 连续 exchange
int a,b; a=10; b=15; int t; t=a; a=b; b=t;
这种算法易于理解,特别适合帮助初学者了解计算机程序的特点,是赋值语句的经典应用。在实际软件开发当中,此算法简单明了,不会产生歧义,便于程序员之间的交流,一般情况下碰到交换变量值的问题,都应采用此算法(以下称为标准算法)。
int a,b; a=10;b=12; a=b-a; //a=2;b=12 b=b-a; //a=2;b=10 a=b+a; //a=10;b=10
它的原理是:把a、b看做数轴上的点,围绕两点间的距离来进行计算。
int *a,*b; //假设 *a=new int(10); *b=new int(20); //&a=0x00001000h,&b=0x00001200h a=(int*)(b-a); //&a=0x00000200h,&b=0x00001200h b=(int*)(b-a); //&a=0x00000200h,&b=0x00001000h a=(int*)(b+int(a)); //&a=0x00001200h,&b=0x00001000h
通过以上运算a、b的地址真的已经完成了交换,且a指向了原先b指向的值,b指向原先a指向的值了吗?上面的代码可以通过编译,但是执行结果却令人匪夷所思!原因何在?
if(a<b) { a=(int*)(b-a); b=(int*)(b-(int(a)&0x0000ffff)); a=(int*)(b+(int(a)&0x0000ffff)); } else { b=(int*)(a-b); a=(int*)(a-(int(b)&0x0000ffff)); b=(int*)(a+(int(b)&0x0000ffff)); }
算法做的最大改进就是采用位运算中的与运算“int(a)&0x0000ffff”,因为地址中高16位为段地址,后16位为位移地址,将它和0x0000ffff进行与运算后,段地址被屏蔽,只保留位移地址。这样就原始算法吻合,从而得到正确的结果。
此算法同样没有使用第三变量就完成了值的交换,与算术算法比较它显得不好理解,但是它有它的优点即在交换很大的数据类型时,它的执行速度比算术算法快。因为它交换的时地址,而变量值在内存中是没有移动过的。(以下称为地址算法)int a=10,b=12; //a=1010^b=1100; a=a^b; //a=0110^b=1100; b=a^b; //a=0110^b=1010; a=a^b; //a=1100=12;b=1010;
此算法能够实现是由异或运算的特点决定的,通过异或运算能够使数据中的某些位翻转,其他位不变。这就意味着任意一个数与任意一个给定的值连续异或两次,值不变。
int exchange(int x,int y) { stack S; push(S,x); push(S,y); x=pop(S); y=pop(S); }
以上算法均实现了不借助其他变量来完成两个变量值的交换,相比较而言算术算法和位算法计算量相当,地址算法中计算较复杂,却可以很轻松的实现大类型(比如自定义的类或结构)的交换,而前两种只能进行整形数据的交换(理论上重载“^”运算符,也可以实现任意结构的交换)。
标签:位置 大于 速度 理论 变量 并且 自定义 连续 exchange
原文地址:http://www.cnblogs.com/Dylansuns/p/6959513.html