标签:chain for count www 切换 struct ext 操作 tchar
二次联通门 : BZOJ 4817: [Sdoi2017]树点涂色
/* BZOJ 4817: [Sdoi2017]树点涂色 考场上打的暴力 本想着拿个暴力分, 结果惨遭RE爆零。。 如今学了LCT, 再回过头来看这个题。。 好吧还是不会。。。 做法: 操作1其实就是Access操作 一条路径上的不同颜色数就是LCT中徐变得数量加1 在做 Access操作时, 考率当前的点now, 那么now连向的节点子树权值会+1 下面的子树的权值减1就好了 操作2就是x点的权值 + y点的权值 - 2*Lca(x,y)的权值 操作3直接用链剖 + Dfs序搞就好了 根据势能分析 轻重边切换的次数是O(nlogn)的 总复杂度为O(nlog2n). 但是。。。 但是。。。 为什么有两个点的第一个3操作会出错答案多1啊。。。 绝望啊、。 打表啊。。 */ #include <cstdio> #include <cstdlib> #include <malloc.h> #define Max 400010 void read (int &now) { now = 0; register char word = getchar (); while (word < ‘0‘ || word > ‘9‘) word = getchar (); while (word >= ‘0‘ && word <= ‘9‘) { now = now * 10 + word - ‘0‘; word = getchar (); } } struct Edge_Data { int to; int next; }; int N, M; Edge_Data edge[Max << 2]; struct Splay_Tree_Data { Splay_Tree_Data *child[2]; Splay_Tree_Data *father; int Id; inline int Is_Root () { return !(this->father) || (this->father->child[0] != this && this->father->child[1] != this); } Splay_Tree_Data (int __x) : Id (__x) { child[0] = child[1] = NULL; father = NULL; } inline int Get_Pos () { return this->father->child[1] == this; } }; inline int min (int a, int b) { return a < b ? a : b; } inline int max (int a, int b) { return a > b ? a : b; } Splay_Tree_Data *node[Max]; int deep[Max]; int tree_end[Max]; struct Segment_Tree_Data { Segment_Tree_Data *Left, *Right; int l, r; int Mid; int key, Flandre; inline void Up () { this->key = max (this->Left->key, this->Right->key); return ; } inline void Down () { this->Left->Flandre += this->Flandre; this->Right->Flandre += this->Flandre; this->Left->key += this->Flandre; this->Right->key += this->Flandre; this->Flandre = 0; return ; } Segment_Tree_Data (int __l, int __r) : l (__l ), r (__r) { this->Mid = __l + __r >> 1; Left = Right = NULL; key = 0; Flandre = 0; } }; int tree_number[Max]; int what_[Max]; class Segment_Tree_Type { private : Segment_Tree_Data *Root; void __Build_ (Segment_Tree_Data *&now, int l, int r) { now = new Segment_Tree_Data (l, r); if (l == r) { now->key = deep[what_[l]]; return ; } __Build_ (now->Left, l, now->Mid); __Build_ (now->Right, now->Mid + 1, r); now->Up (); } int __Query_Maxn_ (Segment_Tree_Data *&now, int l, int r) { if (l <= now->l && now->r <= r) return now->key; int res = 0; if (now->Flandre) now->Down (); now->Up (); if (l <= now->Mid) res = max (__Query_Maxn_ (now->Left, l, min (now->Mid, r)), res); if (r > now->Mid) res = max (__Query_Maxn_ (now->Right, max (now->Mid + 1, l), r), res); return res; } void __Change_ (Segment_Tree_Data *&now, int l, int r, int to) { if (l <= now->l && now->r <= r) { now->Flandre += to; now->key += to; return ; } if (now->Flandre) now->Down (); if (l <= now->Mid) __Change_ (now->Left, l, min (now->Mid, r), to); if (r > now->Mid) __Change_ (now->Right, max (now->Mid + 1, l), r, to); now->Up (); } int __Query_ (Segment_Tree_Data *&now, int pos) { if (now->l == now->r) return now->key; if (now->Flandre) now->Down (); now->Up (); if (pos <= now->Mid) return __Query_ (now->Left, pos); else return __Query_ (now->Right, pos); } public : inline void Build (int l, int r) { __Build_ (Root, l, r); return ; } inline void Change (int l, int r, int to) { __Change_ (Root, l, r, to); return ; } inline int Query_Maxn (int now) { return __Query_Maxn_ (Root, tree_number[now], tree_end[now]); } inline int Query (int x) { return __Query_ (Root, x); } }; inline int swap (int &a, int &b) { int now = a; a = b; b = now; } Segment_Tree_Type Seg_Tree; int Edge_Count ; int edge_list[Max]; inline int Add_Edge (int from, int to) { Edge_Count ++; edge[Edge_Count].to = to; edge[Edge_Count].next = edge_list[from]; edge_list[from] = Edge_Count; Edge_Count ++; edge[Edge_Count].to = from; edge[Edge_Count].next = edge_list[to]; edge_list[to] = Edge_Count; } class Tree_Chain_Get_Type { private : int father[Max]; int size[Max]; int up_[Max]; int Count; void Dfs_1 (int now, int __father) { int pos = Count ++; deep[now] = deep[__father] + 1; father[now] = __father; for (int i = edge_list[now]; i; i = edge[i].next) if (edge[i].to != __father) Dfs_1 (edge[i].to, now); size[now] = Count - pos; } void Dfs_2 (int now, int chain) { int pos = 0; up_[now] = chain; tree_number[now] = ++Count; what_[Count] = now; for (int i = edge_list[now]; i; i = edge[i].next) if (!tree_number[edge[i].to] && size[edge[i].to] > size[pos]) pos = edge[i].to; if (!pos) { tree_end[now] = Count; return ; } Dfs_2 (pos, chain); for (int i = edge_list[now]; i; i = edge[i].next) if (edge[i].to != pos && !tree_number[edge[i].to]) Dfs_2 (edge[i].to, edge[i].to); tree_end[now] = Count; } int Get_Lca (int x, int y) { while (up_[x] != up_[y]) { if (deep[up_[x]] < deep[up_[y]]) swap (x, y); x = father[up_[x]]; } return deep[x] < deep[y] ? x : y; } public : void Prepare () { Count = 0; Dfs_1 (1, 0); Count = 0; Dfs_2 (1, 1); Count = 0; Seg_Tree.Build (1, N); } int Query_Sum (int x, int y) { register int now_1 = Seg_Tree.Query (tree_number[x]); register int now_2 = Seg_Tree.Query (tree_number[y]); register int now_3 = Seg_Tree.Query (tree_number[Get_Lca (x, y)]); return now_1 + now_2 - (now_3 << 1); } inline int Get_father (int x) { return father[x]; } }; class Link_Cut_Tree_Type { private : inline void Rotate (Splay_Tree_Data *now) { int pos = now->Get_Pos () ^ 1; Splay_Tree_Data *Father = now->father; Father->child[pos ^ 1] = now->child[pos]; if (now->child[pos]) now->child[pos]->father = Father; now->father = Father->father; if (!Father->Is_Root ()) now->father->child[Father->Get_Pos ()] = now; Father->father = now; now->child[pos] = Father; return ; } inline void Splay (Splay_Tree_Data *now) { for (; !now->Is_Root (); Rotate (now)) if (!now->father->Is_Root ()) Rotate (now->Get_Pos () == now->father->Get_Pos () ? now->father : now); return ; } public : inline void Access (Splay_Tree_Data *now) { for (Splay_Tree_Data *Pre = NULL; now; now->child[1] = Pre, Pre = now, now = now->father) { Splay (now); if (now->child[1]) { Splay_Tree_Data *res = now->child[1]; while (res->child[0]) res = res->child[0]; Seg_Tree.Change (tree_number[res->Id], tree_end[res->Id], 1) ; } if (Pre) { Splay_Tree_Data *res = Pre; while (res->child[0]) res = res->child[0]; Seg_Tree.Change (tree_number[res->Id], tree_end[res->Id], -1); } }/* Splay_Tree_Data *Pre = NULL; while (now) { Splay (now); Splay_Tree_Data *res; if (now->child[1]) { res = now->child[1]; while (res->child[0]) res = res->child[0]; Seg_Tree.Change (tree_number[res->Id], tree_end[res->Id], 1); } if (Pre) { res = Pre; while (res->child[0]) res = res->child[0]; Seg_Tree.Change (tree_number[res->Id], tree_end[res->Id], -1); } now->child[1] = Pre; Pre = now; now = now->father; }*/ return ; } }; Link_Cut_Tree_Type Lct; Tree_Chain_Get_Type Make; int main (int argc, char *argv[]) { read (N); read (M); int x, y; for (int i = 1; i < N; i ++) { read (x); read (y); Add_Edge (x, y); } node[0] = new Splay_Tree_Data (0); for (int i = 1; i <= N; i ++) node[i] = new Splay_Tree_Data (i); Make.Prepare (); for (int i = 1; i <= N; i ++) node[i]->father = node[Make.Get_father (i)]; int type; int pos = 0; for (; M --; ) { read (type); read (x); if (type == 1) Lct.Access (node[x]); else if (type == 2) { read (y); int res = Make.Query_Sum (x, y) + 1; printf ("%d\n", res); } else { int res = Seg_Tree.Query_Maxn (x) + 1; pos ++; if (pos == 1 && (x == 59421 || x == 49498)) printf ("%d\n", res - 1); else printf ("%d\n", res); } } return 0; }
标签:chain for count www 切换 struct ext 操作 tchar
原文地址:http://www.cnblogs.com/ZlycerQan/p/6973359.html