码迷,mamicode.com
首页 > 其他好文 > 详细

『TensorFlow』单隐藏层自编码器设计

时间:2017-06-10 10:53:09      阅读:198      评论:0      收藏:0      [点我收藏+]

标签:data   记录   否则   hidden   实现   hid   sample   learning   间隔   

计算图设计

很简单的实践,

  • 多了个隐藏层
  • 没有上节的高斯噪声
  • 网络写法由上节的面向对象改为了函数式编程,

其他没有特别需要注意的,实现如下:

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os

os.environ[‘TF_CPP_MIN_LOG_LEVEL‘] = ‘2‘

learning_rate = 0.01                          # 学习率
training_epochs = 20                          # 训练轮数,1轮等于n_samples/batch_size
batch_size = 128                              # batch容量
display_step = 1                              # 展示间隔
example_to_show = 10                          # 展示图像数目

n_hidden_units = 256
n_input_units = 784
n_output_units = n_input_units

def WeightsVariable(n_in, n_out, name_str):
    return tf.Variable(tf.random_normal([n_in, n_out]), dtype=tf.float32, name=name_str)

def biasesVariable(n_out, name_str):
    return tf.Variable(tf.random_normal([n_out]), dtype=tf.float32, name=name_str)

def encoder(x_origin, activate_func=tf.nn.sigmoid):
    with tf.name_scope(‘Layer‘):
        Weights = WeightsVariable(n_input_units, n_hidden_units, ‘Weights‘)
        biases = biasesVariable(n_hidden_units, ‘biases‘)
        x_code = activate_func(tf.add(tf.matmul(x_origin, Weights), biases))
    return x_code

def decode(x_code, activate_func=tf.nn.sigmoid):
    with tf.name_scope(‘Layer‘):
        Weights = WeightsVariable(n_hidden_units, n_output_units, ‘Weights‘)
        biases = biasesVariable(n_output_units, ‘biases‘)
        x_decode = activate_func(tf.add(tf.matmul(x_code, Weights), biases))
    return x_decode

with tf.Graph().as_default():
    with tf.name_scope(‘Input‘):
        X_input = tf.placeholder(tf.float32, [None, n_input_units])
    with tf.name_scope(‘Encode‘):
        X_code = encoder(X_input)
    with tf.name_scope(‘decode‘):
        X_decode = decode(X_code)
    with tf.name_scope(‘loss‘):
        loss = tf.reduce_mean(tf.pow(X_input - X_decode, 2))
    with tf.name_scope(‘train‘):
        Optimizer = tf.train.RMSPropOptimizer(learning_rate)
        train = Optimizer.minimize(loss)

    init = tf.global_variables_initializer()

    # 因为使用了tf.Graph.as_default()上下文环境
    # 所以下面的记录必须放在上下文里面,否则记录下来的图是空的(get不到上面的default)
    writer = tf.summary.FileWriter(logdir=‘logs‘, graph=tf.get_default_graph())
    writer.flush()

 计算图:

技术分享

『TensorFlow』单隐藏层自编码器设计

标签:data   记录   否则   hidden   实现   hid   sample   learning   间隔   

原文地址:http://www.cnblogs.com/hellcat/p/6977830.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!