标签:接口实现 moved read spark技术 content eve src cte 恢复模式
假设Spark的部署方式选择Standalone,一个採用Master/Slaves的典型架构,那么Master是有SPOF(单点故障,Single Point of Failure)。Spark能够选用ZooKeeper来实现HA。
ZooKeeper提供了一个Leader Election机制,利用这个机制能够保证尽管集群存在多个Master可是唯独一个是Active的。其它的都是Standby。当Active的Master出现问题时,另外的一个Standby Master会被选举出来。
因为集群的信息,包含Worker。 Driver和Application的信息都已经持久化到文件系统,因此在切换的过程中只会影响新Job的提交,对于正在进行的Job没有不论什么的影响。加入ZooKeeper的集群总体架构例如以下图所看到的。
Master在启动时。会依据启动參数来决定不同的Master故障重新启动策略:
Master::preStart()能够看出这三种不同逻辑的实现。
override def preStart() { logInfo("Starting Spark master at " + masterUrl) ... //persistenceEngine是持久化Worker,Driver和Application信息的,这样在Master又一次启动时不会影响 //已经提交Job的执行 persistenceEngine = RECOVERY_MODE match { case "ZOOKEEPER" => logInfo("Persisting recovery state to ZooKeeper") new ZooKeeperPersistenceEngine(SerializationExtension(context.system), conf) case "FILESYSTEM" => logInfo("Persisting recovery state to directory: " + RECOVERY_DIR) new FileSystemPersistenceEngine(RECOVERY_DIR, SerializationExtension(context.system)) case _ => new BlackHolePersistenceEngine() } //leaderElectionAgent负责Leader的选取。 leaderElectionAgent = RECOVERY_MODE match { case "ZOOKEEPER" => context.actorOf(Props(classOf[ZooKeeperLeaderElectionAgent], self, masterUrl, conf)) case _ => // 唯独一个Master的集群。那么当前的Master就是Active的 context.actorOf(Props(classOf[MonarchyLeaderAgent], self)) } }
RECOVERY_MODE是一个字符串,能够从spark-env.sh中去设置。
val RECOVERY_MODE = conf.get("spark.deploy.recoveryMode", "NONE")
假设不设置spark.deploy.recoveryMode的话,那么集群的全部执行数据在Master重新启动是都会丢失。这个结论是从BlackHolePersistenceEngine的实现得出的。
private[spark] class BlackHolePersistenceEngine extends PersistenceEngine { override def addApplication(app: ApplicationInfo) {} override def removeApplication(app: ApplicationInfo) {} override def addWorker(worker: WorkerInfo) {} override def removeWorker(worker: WorkerInfo) {} override def addDriver(driver: DriverInfo) {} override def removeDriver(driver: DriverInfo) {} override def readPersistedData() = (Nil, Nil, Nil) }
它把全部的接口实现为空。
PersistenceEngine是一个trait。作为对照,能够看一下ZooKeeper的实现。
class ZooKeeperPersistenceEngine(serialization: Serialization, conf: SparkConf) extends PersistenceEngine with Logging { val WORKING_DIR = conf.get("spark.deploy.zookeeper.dir", "/spark") + "/master_status" val zk: CuratorFramework = SparkCuratorUtil.newClient(conf) SparkCuratorUtil.mkdir(zk, WORKING_DIR) // 将app的信息序列化到文件WORKING_DIR/app_{app.id}中 override def addApplication(app: ApplicationInfo) { serializeIntoFile(WORKING_DIR + "/app_" + app.id, app) } override def removeApplication(app: ApplicationInfo) { zk.delete().forPath(WORKING_DIR + "/app_" + app.id) }
Spark使用的并非ZooKeeper的API,而是使用的org.apache.curator.framework.CuratorFramework 和 org.apache.curator.framework.recipes.leader.{LeaderLatchListener, LeaderLatch} 。Curator在ZooKeeper上做了一层非常友好的封装。
简单总结一下參数的设置,通过上述代码的分析。我们知道为了使用ZooKeeper至少应该设置一下參数(实际上,只须要设置这些參数。通过设置spark-env.sh:
spark.deploy.recoveryMode=ZOOKEEPER spark.deploy.zookeeper.url=zk_server_1:2181,zk_server_2:2181 spark.deploy.zookeeper.dir=/dir // OR 通过一下方式设置 export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER " export SPARK_DAEMON_JAVA_OPTS="${SPARK_DAEMON_JAVA_OPTS} -Dspark.deploy.zookeeper.url=zk_server1:2181,zk_server_2:2181"
各个參数的意义:
參数 | 默认值 | 含义 |
spark.deploy.recoveryMode | NONE | 恢复模式(Master又一次启动的模式)。有三种:1, ZooKeeper, 2。 FileSystem, 3 NONE |
spark.deploy.zookeeper.url | ZooKeeper的Server地址 | |
spark.deploy.zookeeper.dir | /spark | ZooKeeper 保存集群元数据信息的文件文件夹,包含Worker,Driver和Application。 |
CuratorFramework极大的简化了ZooKeeper的使用,它提供了high-level的API,而且基于ZooKeeper加入了非常多特性,包含
CuratorFrameworks通过CuratorFrameworkFactory来创建线程安全的ZooKeeper的实例。
CuratorFrameworkFactory.newClient()提供了一个简单的方式来创建ZooKeeper的实例,能够传入不同的參数来对实例进行全然的控制。获取实例后,必须通过start()来启动这个实例。在结束时,须要调用close()。
/** * Create a new client * * * @param connectString list of servers to connect to * @param sessionTimeoutMs session timeout * @param connectionTimeoutMs connection timeout * @param retryPolicy retry policy to use * @return client */ public static CuratorFramework newClient(String connectString, int sessionTimeoutMs, int connectionTimeoutMs, RetryPolicy retryPolicy) { return builder(). connectString(connectString). sessionTimeoutMs(sessionTimeoutMs). connectionTimeoutMs(connectionTimeoutMs). retryPolicy(retryPolicy). build(); }
首先看一下LeaderlatchListener。它在LeaderLatch状态变化的时候被通知:
因为通知是异步的。因此有可能在接口被调用的时候。这个状态是准确的。须要确认一下LeaderLatch的hasLeadership()是否的确是true/false。这一点在接下来Spark的实现中能够得到体现。
/** * LeaderLatchListener can be used to be notified asynchronously about when the state of the LeaderLatch has changed. * * Note that just because you are in the middle of one of these method calls, it does not necessarily mean that * hasLeadership() is the corresponding true/false value. It is possible for the state to change behind the scenes * before these methods get called. The contract is that if that happens, you should see another call to the other * method pretty quickly. */ public interface LeaderLatchListener { /** * This is called when the LeaderLatch‘s state goes from hasLeadership = false to hasLeadership = true. * * Note that it is possible that by the time this method call happens, hasLeadership has fallen back to false. If * this occurs, you can expect {@link #notLeader()} to also be called. */ public void isLeader(); /** * This is called when the LeaderLatch‘s state goes from hasLeadership = true to hasLeadership = false. * * Note that it is possible that by the time this method call happens, hasLeadership has become true. If * this occurs, you can expect {@link #isLeader()} to also be called. */ public void notLeader(); }
LeaderLatch负责在众多连接到ZooKeeper Cluster的竞争者中选择一个Leader。
Leader的选择机制能够看ZooKeeper的详细实现,LeaderLatch这是完毕了非常好的封装。我们只须要要知道在初始化它的实例后。须要通过
public class LeaderLatch implements Closeable { private final Logger log = LoggerFactory.getLogger(getClass()); private final CuratorFramework client; private final String latchPath; private final String id; private final AtomicReference<State> state = new AtomicReference<State>(State.LATENT); private final AtomicBoolean hasLeadership = new AtomicBoolean(false); private final AtomicReference<String> ourPath = new AtomicReference<String>(); private final ListenerContainer<LeaderLatchListener> listeners = new ListenerContainer<LeaderLatchListener>(); private final CloseMode closeMode; private final AtomicReference<Future<?>> startTask = new AtomicReference<Future<?>>(); . . . /** * Attaches a listener to this LeaderLatch * <p/> * Attaching the same listener multiple times is a noop from the second time on. * <p/> * All methods for the listener are run using the provided Executor. It is common to pass in a single-threaded * executor so that you can be certain that listener methods are called in sequence, but if you are fine with * them being called out of order you are welcome to use multiple threads. * * @param listener the listener to attach */ public void addListener(LeaderLatchListener listener) { listeners.addListener(listener); }
通过addListener能够将我们实现的Listener加入到LeaderLatch。在Listener里。我们在两个接口里实现了被选为Leader或者被剥夺Leader角色时的逻辑就可以。
实际上因为有Curator的存在。Spark实现Master的HA就变得非常easy了,ZooKeeperLeaderElectionAgent实现了接口LeaderLatchListener。在isLeader()确认所属的Master被选为Leader后,向Master发送消息ElectedLeader,Master会将自己的状态改为ALIVE。
当noLeader()被调用时,它会向Master发送消息RevokedLeadership时,Master会关闭。
private[spark] class ZooKeeperLeaderElectionAgent(val masterActor: ActorRef, masterUrl: String, conf: SparkConf) extends LeaderElectionAgent with LeaderLatchListener with Logging { val WORKING_DIR = conf.get("spark.deploy.zookeeper.dir", "/spark") + "/leader_election" // zk是通过CuratorFrameworkFactory创建的ZooKeeper实例 private var zk: CuratorFramework = _ // leaderLatch:Curator负责选出Leader。private var leaderLatch: LeaderLatch = _ private var status = LeadershipStatus.NOT_LEADER override def preStart() { logInfo("Starting ZooKeeper LeaderElection agent") zk = SparkCuratorUtil.newClient(conf) leaderLatch = new LeaderLatch(zk, WORKING_DIR) leaderLatch.addListener(this) leaderLatch.start() }
在prestart中,启动了leaderLatch来处理选举ZK中的Leader。就如在上节分析的,基本的逻辑在isLeader和noLeader中。
override def isLeader() { synchronized { // could have lost leadership by now. //如今leadership可能已经被剥夺了。。详情參见Curator的实现。 if (!leaderLatch.hasLeadership) { return } logInfo("We have gained leadership") updateLeadershipStatus(true) } } override def notLeader() { synchronized { // 如今可能赋予leadership了。详情參见Curator的实现。 if (leaderLatch.hasLeadership) { return } logInfo("We have lost leadership") updateLeadershipStatus(false) } }
updateLeadershipStatus的逻辑非常easy,就是向Master发送消息。
def updateLeadershipStatus(isLeader: Boolean) { if (isLeader && status == LeadershipStatus.NOT_LEADER) { status = LeadershipStatus.LEADER masterActor ! ElectedLeader } else if (!isLeader && status == LeadershipStatus.LEADER) { status = LeadershipStatus.NOT_LEADER masterActor ! RevokedLeadership } }
为了解决Standalone模式下的Master的SPOF,Spark採用了ZooKeeper提供的选举功能。Spark并没有採用ZooKeeper原生的Java API,而是採用了Curator,一个对ZooKeeper进行了封装的框架。採用了Curator后,Spark不用管理与ZooKeeper的连接,这些对于Spark来说都是透明的。
Spark只使用了100行代码,就实现了Master的HA。当然了,Spark是站在的巨人的肩膀上。谁又会去反复发明轮子呢?
请您支持:
假设你看到这里。相信这篇文章对您有所帮助。假设是的话,请为本文投一下票吧: 点击投票,多谢。假设您已经在投票页面,请点击以下的投一票吧!BTW。即使您没有CSDN的帐号,能够使用第三方登录的,包含微博,QQ,Gmail。GitHub,百度。等。
Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源代码实现
标签:接口实现 moved read spark技术 content eve src cte 恢复模式
原文地址:http://www.cnblogs.com/tlnshuju/p/6978113.html