标签:dom max == randn oss pytho oat 方案 for
bestloss = float(‘inf‘) # 无穷大 for num in range(1000): W = np.random.randn(10, 3073) * 0.0001 loss = L(X_train, Y_train, W) if loss < bestloss: bestloss = loss bestW = W scores = bsetW.dot(Xte_cols) Yte_predict = np.argmax(score, axis = 0) np.mean(Yte_predict == Yte)
核心思路:迭代优化
W = np.random.randn(10, 3073) * 0.001 bestloss = float(‘inf‘) for i in range(1000): step_size = 0.0001 Wtry = np.random.randn(10, 3073) * step_size loss = L(Xtr_cols, Ytr, Wtry) if loss < bestloss: W = Wtry bestloss = loss
标签:dom max == randn oss pytho oat 方案 for
原文地址:http://www.cnblogs.com/hellcat/p/6979951.html