标签:== win gic fstream 应该 pre for 不为 alice
题目大意:
给出n+1堆石子,前n堆石子的数量是a[i],最后一堆只有1个石子,但是具有魔力
拿走该石子的一方可以选择接下来是进行普通的Nim游戏还是anti-nim游戏
问是先手必胜还是必败
首先拿全是1的情况熟悉一下规则
如果全是1,那么无论有几堆,先手都是必胜的
因为如果有奇数个1,那么Alice直接拿掉魔力石子,然后选择不改变游戏,那么他还是赢的
如果有偶数个1,那么Alice直接拿掉魔力式子,然后选择改变游戏,于是他还是赢的。
然后回忆一下anti-nim的先手必胜条件(这里的SG不考虑多魔法石子的那一堆)
SG为0,且所有石子均为1
SG不为0,且存在一堆石子大于1
所以,如果不全是1,且SG为0的话,Alice是必输的,因为他取魔力石子后,仍然无法改变必输的情况
所以现在情况只有不全是1,且SG不为0
注意到这个时候任何一方如果直接取魔力石子,都是必败的
所以双方应该会保持SG不为0,然后进行对峙
首先考虑所以石子的数量不超过3
那么SG函数的值就只有3个,1,2,3
当SG为1或3的时候,肯定有一种取法使得SG为2
而SG为2的最终情况是2附加一个魔力石子,这种情况是必败的
所以当石子的数量不超过3时,SG=2先手必败,反之必胜
接下来考虑石子的数量超过3,也就是有4和4以上的数
那么SG函数的值可以分成1和超过1的那些情况
如果当前SG值为1,那么只能把它变成超过1的值,然而对手又可以把它变回到1
我们考虑假设只有1个超过3的数,那么这时候SG值肯定是大于3的
直接改变这个数,我们可以使得接下来的局面变成SG=2
也就是说,如果只有1个超过3的数,那么就是先手必胜
那么如果SG值为1,且我们知道存在超过3的数,那么超过3的数的数量必定至少有2个
也就是说,经过不断地对峙,原来SG值为1的话,现在SG值仍然为1
但是经过了很多减少,一定会达到这个局面
即SG值为1,且超过3的数量只有2个
当这2个其中的一个数减到4以下时,就变成了只有1个超过3的数
即SG->1->3以上->2(最终结果)
也就是说SG如果为1,必定会转化成2,那么SG=1就是必败局面,而其他情况是必胜局面
最后结论就是
如果有大于3的数,那么SG=1必败
如果没有,那么SG=2必败
(PS:题解的思路没有太明白,不知道是怎么想到右移1位然后分类的,然后莫名分类就分出来了orz)
#include <cstdio> #include <cmath> #include <cstring> #include <ctime> #include <iostream> #include <algorithm> #include <set> #include <vector> #include <sstream> #include <typeinfo> #include <fstream> using namespace std; class MagicNim { public: string findWinner(vector<int> a) { sort(a.begin(), a.end()); int n = a.size(), sg = 0; for(int i = 0; i < n; i++) sg ^= a[i]; if(a[n-1] >= 4) return (sg == 1 ? "Bob" : "Alice"); else return (sg == 2 ? "Bob" : "Alice"); } };
标签:== win gic fstream 应该 pre for 不为 alice
原文地址:http://www.cnblogs.com/Saurus/p/7045581.html