标签:元素 报错 nts 在定义函数时 import other error: 有用 失败
定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了。对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了解。
Python的函数定义非常简单,但灵活度却非常大。除了正常定义的必选参数外,还可以使用默认参数、可变参数和关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以简化调用者的代码。
我们先写一个计算x2的函数:
def power(x): return x * x
对于power(x)
函数,参数x
就是一个位置参数。
当我们调用power
函数时,必须传入有且仅有的一个参数x
:
>>> power(5) 25 >>> power(15) 225
现在,如果我们要计算x3怎么办?可以再定义一个power3
函数,但是如果要计算x4、x5……怎么办?我们不可能定义无限多个函数。
你也许想到了,可以把power(x)
修改为power(x, n)
,用来计算xn,说干就干:
def power(x, n): s = 1 while n > 0: n = n - 1 s = s * x return s
对于这个修改后的power(x, n)
函数,可以计算任意n次方:
>>> power(5, 2) 25 >>> power(5, 3) 125
修改后的power(x, n)
函数有两个参数:x
和n
,这两个参数都是位置参数,调用函数时,传入的两个值按照位置顺序依次赋给参数x
和n
。
新的power(x, n)
函数定义没有问题,但是,旧的调用代码失败了,原因是我们增加了一个参数,导致旧的代码因为缺少一个参数而无法正常调用:
>>> power(5) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: power() missing 1 required positional argument: ‘n‘
Python的错误信息很明确:调用函数power()
缺少了一个位置参数n
。
这个时候,默认参数就排上用场了。由于我们经常计算x2,所以,完全可以把第二个参数n的默认值设定为2:
def power(x, n=2): s = 1 while n > 0: n = n - 1 s = s * x return s
而对于n > 2
的其他情况,就必须明确地传入n,比如power(5, 3)
。
从上面的例子可以看出,默认参数可以简化函数的调用。设置默认参数时,有几点要注意:
一是必选参数在前,默认参数在后,否则Python的解释器会报错(思考一下为什么默认参数不能放在必选参数前面);
二是如何设置默认参数。
当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。
使用默认参数有什么好处?最大的好处是能降低调用函数的难度。
举个例子,我们写个一年级小学生注册的函数,需要传入name
和gender
两个参数:
def enroll(name, gender): print(‘name:‘, name) print(‘gender:‘, gender)
这样,调用enroll()
函数只需要传入两个参数:
>>> enroll(‘Sarah‘, ‘F‘) name: Sarah gender: F
如果要继续传入年龄、城市等信息怎么办?这样会使得调用函数的复杂度大大增加。
我们可以把年龄和城市设为默认参数:
def enroll(name, gender, age=6, city=‘Beijing‘): print(‘name:‘, name) print(‘gender:‘, gender) print(‘age:‘, age) print(‘city:‘, city)
这样,大多数学生注册时不需要提供年龄和城市,只提供必须的两个参数:
>>> enroll(‘Sarah‘, ‘F‘) name: Sarah gender: F age: 6 city: Beijing
只有与默认参数不符的学生才需要提供额外的信息:
enroll(‘Bob‘, ‘M‘, 7) enroll(‘Adam‘, ‘M‘, city=‘Tianjin‘)
可见,默认参数降低了函数调用的难度,而一旦需要更复杂的调用时,又可以传递更多的参数来实现。无论是简单调用还是复杂调用,函数只需要定义一个。
有多个默认参数时,调用的时候,既可以按顺序提供默认参数,比如调用enroll(‘Bob‘, ‘M‘, 7)
,意思是,除了name
,gender
这两个参数外,最后1个参数应用在参数age
上,city
参数由于没有提供,仍然使用默认值。
也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上。比如调用enroll(‘Adam‘, ‘M‘, city=‘Tianjin‘)
,意思是,city
参数用传进去的值,其他默认参数继续使用默认值。
默认参数很有用,但使用不当,也会掉坑里。默认参数有个最大的坑,演示如下:
先定义一个函数,传入一个list,添加一个END
再返回:
def add_end(L=[]): L.append(‘END‘) return L
当你正常调用时,结果似乎不错
>>> add_end([1, 2, 3]) [1, 2, 3, ‘END‘] >>> add_end([‘x‘, ‘y‘, ‘z‘]) [‘x‘, ‘y‘, ‘z‘, ‘END‘]
当你使用默认参数调用时,一开始结果也是对的:
>>> add_end() [‘END‘]
但是,再次调用add_end()
时,结果就不对了:
>>> add_end() [‘END‘, ‘END‘] >>> add_end() [‘END‘, ‘END‘, ‘END‘]
很多初学者很疑惑,默认参数是[]
,但是函数似乎每次都“记住了”上次添加了‘END‘
后的list。
原因解释如下:
Python函数在定义的时候,默认参数L
的值就被计算出来了,即[]
,因为默认参数L
也是一个变量,它指向对象[]
,每次调用该函数,如果改变了L
的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的[]
了。
所以,定义默认参数要牢记一点:默认参数必须指向不变对象!
要修改上面的例子,我们可以用None
这个不变对象来实现:
def add_end(L=None): if L is None: L = [] L.append(‘END‘) return L
现在,无论调用多少次,都不会有问题:
>>> add_end() [‘END‘] >>> add_end() [‘END‘]
为什么要设计str
、None
这样的不变对象呢?因为不变对象一旦创建,对象内部的数据就不能修改,这样就减少了由于修改数据导致的错误。此外,由于对象不变,多任务环境下同时读取对象不需要加锁,同时读一点问题都没有。我们在编写程序时,如果可以设计一个不变对象,那就尽量设计成不变对象。
默认参数需要注意的问题:
1、必须放在位置形参后面
2、默认参数通常要定义成不可变类型
3、默认参数只在定义阶段被赋值一次
在Python函数中,还可以定义可变参数。顾名思义,可变参数就是传入的参数个数是可变的,可以是1个、2个到任意个,还可以是0个。
我们以数学题为例子,给定一组数字a,b,c……,请计算a2 + b2 + c2 + ……。
要定义出这个函数,我们必须确定输入的参数。由于参数个数不确定,我们首先想到可以把a,b,c……作为一个list或tuple传进来,这样,函数可以定义如下:
def calc(numbers): sum = 0 for n in numbers: sum = sum + n * n return sum
但是调用的时候,需要先组装出一个list或tuple:
>>> calc([1, 2, 3]) 14 >>> calc((1, 3, 5, 7)) 84
如果利用可变参数,调用函数的方式可以简化成这样:
>>> calc(1, 2, 3) 14 >>> calc(1, 3, 5, 7) 84
所以,我们把函数的参数改为可变参数:
def calc(*numbers): sum = 0 for n in numbers: sum = sum + n * n return sum
定义可变参数和定义一个list或tuple参数相比,仅仅在参数前面加了一个*
号。在函数内部,参数numbers
接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数:
>>> calc(1, 2) 5 >>> calc() 0
如果已经有一个list或者tuple,要调用一个可变参数怎么办?可以这样做:
>>> nums = [1, 2, 3] >>> calc(nums[0], nums[1], nums[2]) 14
这种写法当然是可行的,问题是太繁琐,所以Python允许你在list或tuple前面加一个*
号,把list或tuple的元素变成可变参数传进去:
>>> nums = [1, 2, 3] >>> calc(*nums) 14
*nums
表示把nums
这个list的所有元素作为可变参数传进去。这种写法相当有用,而且很常见。
可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。请看示例:
def person(name, age, **kw): print(‘name:‘, name, ‘age:‘, age, ‘other:‘, kw)
函数person
除了必选参数name
和age
外,还接受关键字参数kw
。在调用该函数时,可以只传入必选参数:
>>> person(‘Michael‘, 30) name: Michael age: 30 other: {}
也可以传入任意个数的关键字参数:
>>> person(‘Bob‘, 35, city=‘Beijing‘) name: Bob age: 35 other: {‘city‘: ‘Beijing‘} >>> person(‘Adam‘, 45, gender=‘M‘, job=‘Engineer‘) name: Adam age: 45 other: {‘gender‘: ‘M‘, ‘job‘: ‘Engineer‘}
关键字参数有什么用?它可以扩展函数的功能。比如,在person
函数里,我们保证能接收到name
和age
这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求。
和可变参数类似,也可以先组装出一个dict,然后,把该dict转换为关键字参数传进去:
>>> extra = {‘city‘: ‘Beijing‘, ‘job‘: ‘Engineer‘} >>> person(‘Jack‘, 24, city=extra[‘city‘], job=extra[‘job‘]) name: Jack age: 24 other: {‘city‘: ‘Beijing‘, ‘job‘: ‘Engineer‘}
当然,上面复杂的调用可以用简化的写法:
>>> extra = {‘city‘: ‘Beijing‘, ‘job‘: ‘Engineer‘} >>> person(‘Jack‘, 24, **extra) name: Jack age: 24 other: {‘city‘: ‘Beijing‘, ‘job‘: ‘Engineer‘}
**extra
表示把extra
这个dict的所有key-value用关键字参数传入到函数的**kw
参数,kw
将获得一个dict,注意kw
获得的dict是extra
的一份拷贝,对kw
的改动不会影响到函数外的extra
。
对于关键字参数,函数的调用者可以传入任意不受限制的关键字参数。至于到底传入了哪些,就需要在函数内部通过kw
检查。
仍以person()
函数为例,我们希望检查是否有city
和job
参数:
def person(name, age, **kw): if ‘city‘ in kw: # 有city参数 pass if ‘job‘ in kw: # 有job参数 pass print(‘name:‘, name, ‘age:‘, age, ‘other:‘, kw)
但是调用者仍可以传入不受限制的关键字参数:
>>> person(‘Jack‘, 24, city=‘Beijing‘, addr=‘Chaoyang‘, zipcode=123456)
如果要限制关键字参数的名字,就可以用命名关键字参数,例如,只接收city
和job
作为关键字参数。这种方式定义的函数如下:
def person(name, age, *, city, job): print(name, age, city, job)
和关键字参数**kw
不同,命名关键字参数需要一个特殊分隔符*
,*
后面的参数被视为命名关键字参数。
调用方式如下:
>>> person(‘Jack‘, 24, city=‘Beijing‘, job=‘Engineer‘) Jack 24 Beijing Engineer
如果函数定义中已经有了一个可变参数,后面跟着的命名关键字参数就不再需要一个特殊分隔符*
了:
def person(name, age, *args, city, job): print(name, age, args, city, job)
命名关键字参数必须传入参数名,这和位置参数不同。如果没有传入参数名,调用将报错:
>>> person(‘Jack‘, 24, ‘Beijing‘, ‘Engineer‘) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: person() takes 2 positional arguments but 4 were given
由于调用时缺少参数名city
和job
,Python解释器把这4个参数均视为位置参数,但person()
函数仅接受2个位置参数。
命名关键字参数可以有缺省值,从而简化调用:
def person(name, age, *, city=‘Beijing‘, job): print(name, age, city, job)
由于命名关键字参数city
具有默认值,调用时,可不传入city
参数:
>>> person(‘Jack‘, 24, job=‘Engineer‘) Jack 24 Beijing Engineer
使用命名关键字参数时,要特别注意,如果没有可变参数,就必须加一个*
作为特殊分隔符。如果缺少*
,Python解释器将无法识别位置参数和命名关键字参数:
def person(name, age, city, job): # 缺少 *,city和job被视为位置参数 pass
在Python中定义函数,可以用必选参数、默认参数、可变参数、关键字参数和命名关键字参数,这5种参数都可以组合使用。
但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数、命名关键字参数和关键字参数。
比如定义一个函数,包含上述若干种参数:
def f1(a, b, c=0, *args, **kw): print(‘a =‘, a, ‘b =‘, b, ‘c =‘, c, ‘args =‘, args, ‘kw =‘, kw) def f2(a, b, c=0, *, d, **kw): print(‘a =‘, a, ‘b =‘, b, ‘c =‘, c, ‘d =‘, d, ‘kw =‘, kw)
在函数调用的时候,Python解释器自动按照参数位置和参数名把对应的参数传进去。
>>> f1(1, 2) a = 1 b = 2 c = 0 args = () kw = {} >>> f1(1, 2, c=3) a = 1 b = 2 c = 3 args = () kw = {} >>> f1(1, 2, 3, ‘a‘, ‘b‘) a = 1 b = 2 c = 3 args = (‘a‘, ‘b‘) kw = {} >>> f1(1, 2, 3, ‘a‘, ‘b‘, x=99) a = 1 b = 2 c = 3 args = (‘a‘, ‘b‘) kw = {‘x‘: 99} >>> f2(1, 2, d=99, ext=None) a = 1 b = 2 c = 0 d = 99 kw = {‘ext‘: None}
最神奇的是通过一个tuple和dict,你也可以调用上述函数:
>>> args = (1, 2, 3, 4) >>> kw = {‘d‘: 99, ‘x‘: ‘#‘} >>> f1(*args, **kw) a = 1 b = 2 c = 3 args = (4,) kw = {‘d‘: 99, ‘x‘: ‘#‘} >>> args = (1, 2, 3) >>> kw = {‘d‘: 88, ‘x‘: ‘#‘} >>> f2(*args, **kw) a = 1 b = 2 c = 3 d = 88 kw = {‘x‘: ‘#‘}
所以,对于任意函数,都可以通过类似func(*args, **kw)
的形式调用它,无论它的参数是如何定义的。
Python的函数具有非常灵活的参数形态,既可以实现简单的调用,又可以传入非常复杂的参数。
默认参数一定要用不可变对象,如果是可变对象,程序运行时会有逻辑错误!
要注意定义可变参数和关键字参数的语法:
*args
是可变参数,args接收的是一个tuple;
**kw
是关键字参数,kw接收的是一个dict。
以及调用函数时如何传入可变参数和关键字参数的语法:
可变参数既可以直接传入:func(1, 2, 3)
,又可以先组装list或tuple,再通过*args
传入:func(*(1, 2, 3))
;
关键字参数既可以直接传入:func(a=1, b=2)
,又可以先组装dict,再通过**kw
传入:func(**{‘a‘: 1, ‘b‘: 2})
。
使用*args
和**kw
是Python的习惯写法,当然也可以用其他参数名,但最好使用习惯用法。
命名的关键字参数是为了限制调用者可以传入的参数名,同时可以提供默认值。
定义命名的关键字参数在没有可变参数的情况下不要忘了写分隔符*
,否则定义的将是位置参数。
函数的嵌套包括函数的嵌套调用和函数的嵌套定义
1 name = "Alex" 2 3 def change_name(): 4 name = "Alex2" 5 6 def change_name2(): 7 name = "Alex3" 8 print("第3层打印",name) 9 10 change_name2() #调用内层函数 11 print("第2层打印",name) 12 13 14 change_name() 15 print("最外层打印",name)
运行结果:
第3层打印 Alex3
第2层打印 Alex2
最外层打印 Alex
这就是一层一层嵌套,name也发生了变化。要是在最外层调用change_name2就会报错。
这是因为作用域在定义函数时就已经固定了,不会随着调用函数的位置而改变。
作用域:作用范围
全局作用域:内置名称空间与全局名称空间的名字属于全局范围,
在整个文件的任意位置都能被引用,全局有效
局部作用域:局部名称空间的名字属于局部范围,
只在函数内部可以被引用,局部有效
名称空间:存放名字与值的绑定关系
名称空间分为三种:内置名称空间、全局名称空间、局部名称空间
内置名称空间:python解释器自带的名字,python解释器启动就会生成
全局名称空间:文件级别定义的名字都会存放与全局名称空间,执行python文件时会产生
x=1 def func(): pass class Foo: pass import os if 1 > 2 : y=3
局部名称空间:定义在函数内部的名字,局部名称空间只有在调用函数时才会生效,函数调用结束则失效
def func(x,y): #x=1,y=2 z=3 func(1,2)
三者的加载顺序:内置名称空间->全局名称空间->局部名称空间
取值:局部名称空间->全局名称空间->内置名称空间
函数内部修改上层的变量(上层内部没有会报错,不能修改全局变量)
nonlocal x
x=1000
函数内部修改全局变量
global x
x=1000000
def foo(): x=1 print(globals()) #打印全局名称空间 print(locals()) #打印当前层名称空间 foo()
{‘__name__‘: ‘__main__‘, ‘__doc__‘: None, ‘__package__‘: None, ‘__loader__‘: <_frozen_importlib_external.SourceFileLoader object at 0x000000000057A518>, ‘__spec__‘: None, ‘__annotations__‘: {}, ‘__builtins__‘: <module ‘builtins‘ (built-in)>, ‘__file__‘: ‘E:/PycharmProjects/qz5/Day6.py‘, ‘__cached__‘: None, ‘foo‘: <function foo at 0x0000000000523E18>} {‘x‘: 1}
标签:元素 报错 nts 在定义函数时 import other error: 有用 失败
原文地址:http://www.cnblogs.com/1204guo/p/7050466.html