码迷,mamicode.com
首页 > 其他好文 > 详细

hdu 4405 Aeroplane chess (概率dp)

时间:2017-06-20 13:45:28      阅读:147      评论:0      收藏:0      [点我收藏+]

标签:mod   概率   content   name   --   algo   结束   double   题目   

/*
题目大意:
问从0到n所花费时间平均时间。每次有投骰子。投到几就走几步。当然了,还有近道。

题目分析: 如果如今在i,那么接下来有六种可能的走法,各自是: i到i+1,在由i+1到结束 i到i+2,在由i+2到结束 i到i+3,在由i+3到结束 i到i+4,在由i+4到结束 i到i+5,在由i+5到结束 i到i+6,在由i+6到结束 当中每个可能的走法发生的概率为n为1/6。那么最好还是定义dp(i),表示从i走到结束的期望。

那么有以下的等式: dp(i-1) = sum((dp((i-1)+j)+1)*p) 当中j ∈[0,6]。 当(i-1)+j >= n时。仅仅须要时间1就能够结束。

当有近道(i,j)时,能够直接跳过去。

dp(i)=dp(j)。 */ # include <stdio.h> # include <algorithm> # include <string.h> # include <iostream> using namespace std; int n; double dp[100010]; int h[100010]; void slove() { memset(dp,0,sizeof(dp)); for(int i=n; i>=1; i--) { double p=1.0/6.0;//骰子概率 for(int j=1; j<=6; j++) { int id=h[i-1]; if(id!=-1)//直接过来,不用掷骰子 dp[i-1]=dp[id]; else { if((i-1)+j>=n) dp[i-1]+=p; else dp[i-1]+=(dp[(i-1)+j]+1)*p; } } } } int main() { int m,a,b; while(~scanf("%d%d",&n,&m),n+m) { memset(h,-1,sizeof(h)); while(m--) { scanf("%d%d",&a,&b); h[a]=b; } slove(); printf("%.4lf\n",dp[0]); } return 0; }


hdu 4405 Aeroplane chess (概率dp)

标签:mod   概率   content   name   --   algo   结束   double   题目   

原文地址:http://www.cnblogs.com/jhcelue/p/7053649.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!