标签:open return strong 约数 gcd pre view sed cli
ax=b(mod c),求最小的x
先说一下扩展欧几里得定理:对于不完全为0的整数a,b,gcd(a,b)表示a,b的最大公约数。那么一定存在整数x,y使得gcd(a,b)=ax+by。
求解x,y方法:设 a>b。
1,显然当b=0,gcd(a,b)=a。此时x=1,y=0;
2,ab!=0时设ax1+by1=gcd(a,b);
bx2+(a mod b)y2=gcd(b,a mod b);
根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);
则:ax1+by1=bx2+(a mod b)y2;
即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;
根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2。上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。
扩展欧几里得代码
1 int exgcd(int a,int b,int &x,int &y) 2 { 3 if(b==0) 4 { 5 x=1; 6 y=0; 7 return a; 8 } 9 int r=exgcd(b,a%b,x,y); 10 int t=x; 11 x=y; 12 y=t-a/b*y; 13 return r; 14 }
标签:open return strong 约数 gcd pre view sed cli
原文地址:http://www.cnblogs.com/mjtcn/p/7066329.html