标签:style os io for sp amp on size ad
思路:这题刚开始一看没太懂,然后想想原来是裸的最大费用最大流,建图后搞下就行了。
不过题目说是用二分匹配来做,因为自己二分匹配的那个带权匹配不会,所以直接用最小费用最大流来做了,反正都一样能求。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<set>
#include<cmath>
#include<bitset>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson i<<1,l,mid
#define rson i<<1|1,mid+1,r
#define llson j<<1,l,mid
#define rrson j<<1|1,mid+1,r
#define INF 0x7fffffff
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
#define maxn 20005
struct
{
int v,w,c,next,re;
//re记录逆边的下标,c是费用,w是流量
} e[maxn];
int sink,cnt,flow,minflow;
int head[maxn],que[maxn*10],pre[maxn],dis[maxn];
bool vis[maxn];
void add(int u, int v, int w, int c)
{
e[cnt].v=v,e[cnt].w=w,e[cnt].c=c;
e[cnt].next=head[u];
e[cnt].re=cnt+1,head[u]=cnt++;
e[cnt].v=u,e[cnt].w=0,e[cnt].c=-c;
e[cnt].next=head[v];
e[cnt].re=cnt-1,head[v]=cnt++;
}
bool spfa()
{
int i, l = 0, r = 1;
for(i = 0; i <= sink; i ++)
dis[i] = INF,vis[i] = false;
dis[0]=0,que[0]=0,minflow=INF,vis[0]=true;
while(l<r)
{
int u=que[l++];
for(i=head[u]; i!=-1; i=e[i].next)
{
int v = e[i].v;
if(e[i].w&&dis[v]>dis[u]+e[i].c)
{
dis[v] = dis[u] + e[i].c;
minflow=min(minflow,e[i].w);
pre[v] = i;
if(!vis[v])
{
vis[v] = true;
que[r++] = v;
}
}
}
vis[u] = false;
}
return dis[sink]!=INF;
}
int change()
{
int i,p;
for(i=sink; i!=0; i=e[e[p].re].v)
{
p=pre[i];
e[p].w-=minflow;
e[e[p].re].w+=minflow;
}
flow+=minflow;
return minflow*dis[sink];
}
int EK()
{
int sum=0;
while(spfa()) sum+=change();
return sum;
}
void init()
{
mem(head,-1),mem(pre,0),cnt=0,flow=0;
}
int main()
{
int n,m,i,j,a;
scanf("%d%d",&n,&m);
init();
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
{
scanf("%d",&a);
add(i,n+j,1,-a);
}
sink=n+m+1;
for(i=1;i<=n;i++)
add(0,i,1,0);
for(i=1;i<=m;i++)
add(n+i,sink,1,0);
printf("%d\n",-EK());
return 0;
}
标签:style os io for sp amp on size ad
原文地址:http://blog.csdn.net/u011466175/article/details/38943727