码迷,mamicode.com
首页 > 其他好文 > 详细

机器学习中的 precision、recall、accuracy、F1 Score

时间:2017-06-24 00:23:14      阅读:266      评论:0      收藏:0      [点我收藏+]

标签:理解   print   make   记忆   htm   学习   ati   int   logs   

先看四个概念定义: 
- TP,True Positive 
- FP,False Positive 
- TN,True Negative 
- FN,False Negative

如何理解记忆这四个概念定义呢?

举个简单的二元分类问题 例子:

假设,我们要对某一封邮件做出一个判定,判定这封邮件是垃圾邮件、还是这封邮件不是垃圾邮件?

如果判定是垃圾邮件,那就是做出(Positive)的判定; 
如果判定不是垃圾邮件,那就做出(Negative)的判定。

True Positive(TP)意思表示做出Positive的判定,而且判定是正确的。因此,TP的数值表示正确的Positive判定的个数。 
同理,False Positive(TP)数值表示错误的Positive判定的个数。 
依此,True Negative(TN)数值表示正确的Negative判定个数。 
False Negative(FN)数值表示错误的Negative判定个数。

2. Precision、Recall、Accuracy、F1 Score(F Score)

四个概念定义:

precision = TP / (TP + FP)
recall = TP / (TP + FN)
accuracy = (TP + TN) / (TP + FP + TN + FN)
F1 Score = 2*P*R/(P+R),其中P和R分别为 precision 和 recall

如果某个二元分类问题,训练拟合得到了几个模型假设,那么通常我们选择在验证集上,F1 Score 数值最大的那个模型假设。

 

技术分享

 参考于http://www.cnblogs.com/jiangyi-uestc/p/6044282.html

机器学习中的 precision、recall、accuracy、F1 Score

标签:理解   print   make   记忆   htm   学习   ati   int   logs   

原文地址:http://www.cnblogs.com/weedboy/p/7072010.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!