码迷,mamicode.com
首页 > 其他好文 > 详细

数据可视化是什么

时间:2017-06-29 20:32:14      阅读:263      评论:0      收藏:0      [点我收藏+]

标签:bsp   服务   abi   water   style   大小   com   img   技术   

    数据可视化( Data Visualization )起源于18世纪,William Playfair 在他出版的书籍《 The Commercial and Political Atlas 》中第一次使用了柱形图和折线图。

当时是为了表示国家的进出口量,在今天依旧这么使用。19世纪初,他出版了《 Statistical Breviary 》一书。里面第一次使用了饼状图。这三种都是至今最经常使用的最著名的可视化图形。19世纪中叶。数据可视化主要被用于军事用途,用来表示军队死亡原因、军队的分布图等。进入20世纪,数据可视化有了飞跃性的发展。1990年。在人机界面学会上,作为信息可视化原型的技术被发表。1995年。IEEE Information Visualization 正式创立,信息可视化作为独立的学科被正式确立[1]。随着2012年世界进入大数据时代。数据可视化作为大量数据的呈现方式,成为当前重要的课题。


1. 数据可视化是什么

    The main goal of data visualization is its ability to visualize data, communicating information clearly and effectively.

    数据可视化的目的,是要对数据进行可视化处理,以使得可以明白地有效地传递信息。

--- Vitaly Friedman

2. 为什么可视化之后会更好

    比起枯燥乏味的数值,人类对于大小、位置、浓淡、颜色、形状等可以有更好更快的认识。

经过可视化之后的数据可以加深人对于数据的理解和记忆。

    比如有下面的数据。你能一眼看出哪一个最大吗?

【 321, 564, 1391, 245, 641, 798, 871 】

    可视化之后呢?

技术分享

    这样是否易于理解了呢?


3. 数据可视化的构成要素

    数据可视化的手法非常多。当中有一些共通的视觉要素。整理例如以下。

  • 坐标。数值的位置被相应到直角坐标系或极坐标系上。

  • 大小

    数据的大小被相应到图形的大小。

  • 色彩。数值的分类和界限等相应到颜色的不同。

  • 标签

    数值的特征用标签来标记。

  • 关联。数值之间的联系。用关联线条等连接起来。

4. 数据可视化的适用范围

    眼下存在着多种划分方法,常见的有[2]:

   《Data Visualization: Modern Approaches》(“数据可视化:现代方法”,2007)中阐述了数据可视化的下列主题:

  • 思维导图
  • 新闻的显示
  • 数据的显示
  • 连接的显示
  • 站点的显示
  • 文章与资源
  • 工具与服务

    Frits H. Post(2002)从计算机科学的视角,将这一领域划分为例如以下多个子领域:

  • 可视化算法与技术方法
  • 立体可视化
  • 信息可视化
  • 多分辨率方法
  • 建模技术方法
  • 交互技术方法与体系架构

5. 数据可视化和信息可视化的关系

    数据可视化( Data Visualization )和信息可视化( Information Visualization )非常相近。有时差点儿能够等同。但严格来说它们是不同的,它们的不同能够总结为一句话:数据可视化是对数字信息进行可视化,信息可视化是对数字信息非数字信息进行可视化。



本人的个人博客为: www.ourd3js.com 

csdn博客为:blog.csdn.net/lzhlzz

转载请注明出处,谢谢。


[1] データ可視化「実践」入門。森藤大地,あんちべ,2014

[2] http://zh.wikipedia.org/wiki/数据可视化

数据可视化是什么

标签:bsp   服务   abi   water   style   大小   com   img   技术   

原文地址:http://www.cnblogs.com/mthoutai/p/7096076.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!