标签:end logs kernel sum com cti floor perm for
function just_one_CNN() load mnist_uint8; train_x=double(reshape(train_x‘,28,28,60000))/255; test_x=double(reshape(test_x‘,28,28,10000))/255; train_y=double(train_y‘)/255; test_y=double(test_y‘)/255; cnn.layers={struct(‘type‘,‘i‘); struct(‘type‘,‘c‘,‘outputmaps‘,6,‘kernelsize‘,5); struct(‘type‘,‘s‘,‘scale‘,2); struct(‘type‘,‘c‘,‘outputmaps‘,16,‘kernelsize‘,5); struct(‘type‘,‘s‘,‘scale‘,2);}; cnn=cnnsetup(cnn,train_x,train_y); opts.alpha=1; opts.batchsizes=2; opts.numepoches=2; cnn=cnntrain(cnn,train_x,train_y,opts); preimage=predict(); cnntest(cnn,preimage); end function net=cnnsetup(net,x,y) inputmaps=1; mapsize=size(x(:,:,1)); for l=1:numel(net.layers) if strcmp(net.layers{l}.type,‘s‘) mapsize=mapsize/net.layers{l}.scale; for j=1:inputmaps net.layers{l}.b{j}=0; end end if strcmp(net.layers{l}.type,‘c‘) mapsize=mapsize-net.layers{l}.kernelsize+1; fan_out=net.layers{l}.outputmaps*net.layers{l}.kernelsize^2; for j=1:net.layers{l}.outputmaps fan_in=inputmaps*net.layers{l}.kernelsize^2; for i=1:inputmaps net.layers{l}.k{i}{j}=(rand(net.layers{l}.kernelsize)- 0.5) * 2 * sqrt(6 / (fan_in + fan_out)); end net.layers{l}.b{j}=0; end inputmaps=net.layers{l}.outputmaps; end end fvnum=prod(mapsize)*inputmaps; onum=size(y,1); net.ffb=zeros(onum,1); net.ffW=(rand(onum, fvnum) - 0.5) * 2 * sqrt(6 / (onum + fvnum)); end function net=cnntrain(net,x,y,opts) m=size(x,3); numbatchs=m/opts.batchsizes; if rem(numbatchs, 1) ~= 0 error(‘numbatches not integer‘); end net.rL=[]; for i=1:opts.numepoches tic; kk=randperm(m); for l=1:numbatchs batch_x=x(:,:,kk((l-1)*opts.batchsizes+1:l*opts.batchsizes)); batch_y=y(:,kk((l-1)*opts.batchsizes+1:l*opts.batchsizes)); net=cnnff(net,batch_x); net=cnnbp(net,batch_y); net = cnnapplygrads(net, opts); if isempty(net.rL) net.rL(1) = net.L; end net.rL(end + 1) = 0.99 * net.rL(end) + 0.01 * net.L; end toc end end function net=cnnff(net,x) n=numel(net.layers); net.layers{1}.a{1}=x; inputmaps=1; for l=2:n if strcmp(net.layers{l}.type,‘c‘) for j=1:net.layers{l}.outputmaps z=zeros(size(net.layers{l-1}.a{1})-[net.layers{l}.kernelsize-1 net.layers{l}.kernelsize-1 0]); for i=1:inputmaps z=z+convn(net.layers{l-1}.a{i},net.layers{l}.k{i}{j},‘valid‘); end net.layers{l}.a{j}=sigm(z+net.layers{l}.b{j}); end inputmaps=net.layers{l}.outputmaps; elseif strcmp(net.layers{l}.type,‘s‘) for j=1:inputmaps z=convn(net.layers{l-1}.a{j},ones(net.layers{l}.scale)/(net.layers{l}.scale^2),‘valid‘); net.layers{l}.a{j} = z(1 : net.layers{l}.scale : end, 1 : net.layers{l}.scale : end, :); end end end net.fv=[]; for j=1:numel(net.layers{n}.a) sa=size(net.layers{n}.a{j}); net.fv=[net.fv;reshape(net.layers{n}.a{j},sa(1)*sa(2),sa(3))]; end net.o = sigm(net.ffW * net.fv + repmat(net.ffb, 1, size(net.fv, 2))); end function [out]=sigm(in) out=1./(1+exp(-in)); end function net=cnnbp(net,y) n=numel(net.layers); net.e=net.o-y; net.L=1/2*sum(net.e(:).^2)/size(net.e,2); net.od=net.e.*(net.o.*(1-net.o)); net.fvd=(net.ffW‘*net.od); if strcmp(net.layers{n}.type,‘c‘) net.fvd=net.fv.*(netfv.*(1-net.fv)); end sa=size(net.layers{n}.a{1}); fvnum=sa(1)*sa(2); for j = 1 : numel(net.layers{n}.a) net.layers{n}.d{j} = reshape(net.fvd(((j - 1) * fvnum + 1) : j * fvnum, :), sa(1), sa(2), sa(3)); end for l = (n - 1) : -1 : 1 if strcmp(net.layers{l}.type, ‘c‘) for j = 1 : numel(net.layers{l}.a) net.layers{l}.d{j} = net.layers{l}.a{j} .* (1 - net.layers{l}.a{j}) .* (expand(net.layers{l + 1}.d{j}, [net.layers{l + 1}.scale net.layers{l + 1}.scale 1]) / net.layers{l + 1}.scale ^ 2); end elseif strcmp(net.layers{l}.type, ‘s‘) for i = 1 : numel(net.layers{l}.a) z = zeros(size(net.layers{l}.a{1})); for j = 1 : numel(net.layers{l + 1}.a) z = z + convn(net.layers{l + 1}.d{j}, rot180(net.layers{l + 1}.k{i}{j}), ‘full‘); end net.layers{l}.d{i} = z; end end end for l = 2 : n if strcmp(net.layers{l}.type, ‘c‘) for j = 1 : numel(net.layers{l}.a) for i = 1 : numel(net.layers{l - 1}.a) net.layers{l}.dk{i}{j} = convn(flipall(net.layers{l - 1}.a{i}), net.layers{l}.d{j}, ‘valid‘) / size(net.layers{l}.d{j}, 3); end net.layers{l}.db{j} = sum(net.layers{l}.d{j}(:)) / size(net.layers{l}.d{j}, 3); end end end net.dffW = net.od * (net.fv)‘ / size(net.od, 2); net.dffb = mean(net.od, 2); end function X = rot180(X) X = flipdim(flipdim(X, 1), 2); end function net = cnnapplygrads(net, opts) for l = 2 : numel(net.layers) if strcmp(net.layers{l}.type, ‘c‘) for j = 1 : numel(net.layers{l}.a) for ii = 1 : numel(net.layers{l - 1}.a) net.layers{l}.k{ii}{j} = net.layers{l}.k{ii}{j} - opts.alpha * net.layers{l}.dk{ii}{j}; end end net.layers{l}.b{j} = net.layers{l}.b{j} - opts.alpha * net.layers{l}.db{j}; end end net.ffW = net.ffW - opts.alpha * net.dffW; net.ffb = net.ffb - opts.alpha * net.dffb; end function cnntest(net, x) net = cnnff(net, x); [~, h] = max(net.o); disp(‘the image data is‘); disp(h-1); end function [guige]=predict() ff=imread(‘seven.png‘); tgray=rgb2gray(ff); tgray(1:7,:)=[]; tgray(end-3:end,:)=[]; tgray(:,1)=[]; gg=imread(‘eight.png‘); eg=rgb2gray(gg); eg(1:5,:)=[]; eg(end-4:end,:)=[]; eg(:,1)=[]; eg(:,end)=[]; guige=[tgray;eg]; guige=double(reshape(guige‘,28,28,2))/255; end function B = expand(A, S) if nargin < 2 error(‘Size vector must be provided. See help.‘); end SA = size(A); if length(SA) ~= length(S) error(‘Length of size vector must equal ndims(A). See help.‘) elseif any(S ~= floor(S)) error(‘The size vector must contain integers only. See help.‘) end T = cell(length(SA), 1); for ii = length(SA) : -1 : 1 H = zeros(SA(ii) * S(ii), 1); H(1 : S(ii) : SA(ii) * S(ii)) = 1; T{ii} = cumsum(H); end B = A(T{:}); end function X=flipall(X) for i=1:ndims(X) X = flipdim(X,i); end end
上面代码只需要放在一个just_one_CNN函数里面就能运行。
可以任意拓展网络的层数,只需更新相应的参数就可以
对下面两张rgb图片能够正确识别,但是要进行处理,要将图片转为灰度图,分割成大小为28x28的图片,在展开成两行向量
标签:end logs kernel sum com cti floor perm for
原文地址:http://www.cnblogs.com/semen/p/7103829.html