标签:zhang nbsp div 图结构 函数 max graph 一个 建图
图的实现:邻接矩阵
为了表现图中顶点之间的关联,我们能够使用邻接矩阵来实现图结构。
所谓的邻接矩阵。就是一个反应边与边之间联系的二维数组。这个二维数组我们用matrix[numV][numV]表示。当中numV是顶点数。
对于无权图
若顶点Vi和Vj之间有边,则matrix[Vi][Vj]=1;否则matrix[Vi][Vj]=0。
对于有权图
若顶点Vi和Vj之间有边,且权值为weight,则matrix[Vi][Vj]=weight;否则matrix[Vi][Vj]=0或MAXWEIGHT(取最小权值或最大权值)。
以下给出一个实例
类定义
#include<iostream> #include<iomanip> using namespace std; //最大权值 #define MAXWEIGHT 100 //用邻接矩阵实现图 class Graph { private: //是否带权 bool isWeighted; //是否有向 bool isDirected; //顶点数 int numV; //边数 int numE; //邻接矩阵 int **matrix; public: /* 构造方法 numV是顶点数。isWeighted是否带权值,isDirected是否有方向 */ Graph(int numV, bool isWeighted = false, bool isDirected = false); //建图 void createGraph(); //析构方法 ~Graph(); //获取顶点数 int getVerNums() {return numV;} //获取边数 int getEdgeNums() {return numE;} //设置指定边的权值 void setEdgeWeight(int tail, int head, int weight); //打印邻接矩阵 void printAdjacentMatrix(); //检查输入 bool check(int i, int j, int w = 1); };类实现
/* 构造方法 numV是顶点数,isWeighted是否带权值,isDirected是否有方向 */ Graph::Graph(int numV, bool isWeighted, bool isDirected) { while (numV <= 0) { cout << "输入的顶点数不正确。,又一次输入 "; cin >> numV; } this->numV = numV; this->isWeighted = isWeighted; this->isDirected = isDirected; matrix = new int*[numV]; //指针数组 int i, j; for (i = 0; i < numV; i++) matrix[i] = new int[numV]; //对图进行初始化 if (!isWeighted) //无权图 { //全部权值初始化为0 for (i = 0; i < numV; i++) for (j = 0; j < numV; j++) matrix[i][j] = 0; } else //有权图 { //全部权值初始化为最大权值 for (i = 0; i < numV; i++) for (j = 0; j < numV; j++) matrix[i][j] = MAXWEIGHT; } } //建图 void Graph::createGraph() { cout << "输入边数 "; while (cin >> numE && numE < 0) cout << "输入有误!,又一次输入 "; int i, j, w; if (!isWeighted) //无权图 { if (!isDirected) //无向图 { cout << "输入每条边的起点和终点:\n"; for (int k = 0; k < numE; k++) { cin >> i >> j; while (!check(i, j)) { cout << "输入的边不正确!又一次输入\n"; cin >> i >> j; } matrix[i][j] = matrix[j][i] = 1; } } else //有向图 { cout << "输入每条边的起点和终点:\n"; for (int k = 0; k < numE; k++) { cin >> i >> j; while (!check(i, j)) { cout << "输入的边不正确!主函数又一次输入\n"; cin >> i >> j; } matrix[i][j] = 1; } } } else //有权图 { if (!isDirected) //无向图 { cout << "输入每条边的起点、终点和权值:\n"; for (int k = 0; k < numE; k++) { cin >> i >> j >> w; while (!check(i, j, w)) { cout << "输入的边不正确。又一次输入\n"; cin >> i >> j >> w; } matrix[i][j] = matrix[j][i] = w; } } else //有向图 { cout << "输入每条边的起点、终点和权值:\n"; for (int k = 0; k < numE; k++) { cin >> i >> j >> w; while (!check(i, j, w)) { cout << "输入的边不正确!
又一次输入\n"; cin >> i >> j >> w; } matrix[i][j] = w; } } } } //析构方法 Graph::~Graph() { int i = 0; for (i = 0; i < numV; i++) delete[] matrix[i]; delete[]matrix; } //设置指定边的权值 void Graph::setEdgeWeight(int tail, int head, int weight) { if (isWeighted) { while (!check(tail, head, weight)) { cout << "输入不正确。又一次输入边的起点、终点和权值 "; cin >> tail >> head >> weight; } if (isDirected) matrix[tail][head] = weight; else matrix[tail][head] = matrix[head][tail] = weight; } else { while (!check(tail, head, 1)) { cout << "输入不正确。又一次输入边的起点、终点 "; cin >> tail >> head; } if (isDirected) matrix[tail][head] = 1-matrix[tail][head]; else matrix[tail][head] = matrix[head][tail] = 1 - matrix[tail][head]; } } //输入检查 bool Graph::check(int i, int j, int w) { if (i >= 0 && i < numV && j >= 0 && j < numV && w > 0 && w <= MAXWEIGHT) return true; else return false; } //打印邻接矩阵 void Graph::printAdjacentMatrix() { int i, j; cout.setf(ios::left); cout << setw(4) << " "; for (i = 0; i < numV; i++) cout << setw(4) << i; cout << endl; for (i = 0; i < numV; i++) { cout << setw(4) << i; for (j = 0; j < numV; j++) cout << setw(4) << matrix[i][j]; cout << endl; } }
int main() { cout << "******使用邻接矩阵实现图结构***by David***" << endl; bool isDirected, isWeighted; int numV; cout << "建图" << endl; cout << "输入顶点数 "; cin >> numV; cout << "边是否带权值,0(不带) or 1(带) "; cin >> isWeighted; cout << "是否是有向图,0(无向) or 1(有向) "; cin >> isDirected; Graph graph(numV, isWeighted, isDirected); cout << "这是一个"; isDirected ?执行cout << "有向、" : cout << "无向、"; isWeighted ? cout << "有权图" << endl : cout << "无权图" << endl; graph.createGraph(); cout << "打印邻接矩阵" << endl; graph.printAdjacentMatrix(); cout << endl; int tail, head, weight; cout << "改动指定边的权值" << endl; if (isWeighted) //针对有权图 { cout << "输入边的起点、终点和权值 "; cin >> tail >> head >> weight; graph.setEdgeWeight(tail, head, weight); } else //针对无权图 { cout << "输入边的起点、终点 "; cin >> tail >> head; graph.setEdgeWeight(tail, head, 1); } cout << "改动成功!
" << endl; cout << "打印邻接矩阵" << endl; graph.printAdjacentMatrix(); system("pause"); return 0; }
实例一
实例二
完整代码下载:图的实现:邻接矩阵
转载请注明出处,本文地址:http://blog.csdn.net/zhangxiangdavaid/article/details/38321327
若有所帮助。顶一个哦。
专栏文件夹:
标签:zhang nbsp div 图结构 函数 max graph 一个 建图
原文地址:http://www.cnblogs.com/llguanli/p/7105047.html