标签:image minimum icpc 路径 mon emc who prot color
4 6 1 0 0 1 0 0 0 1 1 0 0 0 2 0 0 0 0 0 0 2 0 1 1 0
Case 1: 4
题意:给一个n*m的巨阵,1:代表羊,2:代表狼。如今要用长为1的 篱笆去隔开狼与羊,问最少用多少根篱笆。
解题:最小割。建图:源点S=0,汇点T=n*m+1;狼与源点相连,边容INF,羊与汇点相连。边容INF。
其它相邻的点相连,边容为1。
#include<stdio.h> #include<string.h> #include<queue> using namespace std; #define captype int const int MAXN = 40010; //点的总数 const int MAXM = 400010; //边的总数 const int INF = 1<<30; struct EDG{ int to,next; captype cap; } edg[MAXM]; int eid,head[MAXN]; int gap[MAXN]; //每种距离(或可觉得是高度)点的个数 int dis[MAXN]; //每一个点到终点eNode 的最短距离 int cur[MAXN]; //cur[u] 表示从u点出发可流经 cur[u] 号边 void init(){ eid=0; memset(head,-1,sizeof(head)); } //有向边 三个參数。无向边4个參数 void addEdg(int u,int v,captype c,captype rc=0){ edg[eid].to=v; edg[eid].next=head[u]; edg[eid].cap=c; head[u]=eid++; edg[eid].to=u; edg[eid].next=head[v]; edg[eid].cap=rc; head[v]=eid++; } //预处理eNode点到全部点的最短距离 void BFS(int sNode, int eNode){ queue<int>q; memset(gap,0,sizeof(gap)); memset(dis,-1,sizeof(dis)); gap[0]=1; dis[eNode]=0; q.push(eNode); while(!q.empty()){ int u=q.front(); q.pop(); for(int i=head[u]; i!=-1; i=edg[i].next){ int v=edg[i].to; if(dis[v]==-1){ dis[v]=dis[u]+1; gap[dis[v]]++; q.push(v); } } } } int S[MAXN]; //路径栈,存的是边的id号 captype maxFlow_sap(int sNode,int eNode, int n){ //注意:n为点的总个数,包含源点与汇点 BFS(sNode, eNode); //预处理eNode到全部点的最短距离 if(dis[sNode]==-1) return 0; //源点到不可到达汇点 memcpy(cur,head,sizeof(head)); int top=0; //栈顶 captype ans=0; //最大流 int u=sNode; while(dis[sNode]<n){ //推断从sNode点有没有流向下一个相邻的点 if(u==eNode){ //找到一条可增流的路 captype Min=INF ; int inser; for(int i=0; i<top; i++) //从这条可增流的路找到最多可增的流量Min if(Min>=edg[S[i]].cap){ Min=edg[S[i]].cap; inser=i; } for(int i=0; i<top; i++){ edg[S[i]].cap-=Min; edg[S[i]^1].cap+=Min; //可回流的边的流量 } ans+=Min; top=inser; //从这条可增流的路中的流量瓶颈 边的上一条边那里是能够再增流的,所以仅仅从断流量瓶颈 边裁断 u=edg[S[top]^1].to; //流量瓶颈 边的起始点 continue; } bool flag = false; //推断是否能从u点出发可往相邻点流 int v; for(int i=cur[u]; i!=-1; i=edg[i].next){ v=edg[i].to; if(edg[i].cap>0 && dis[u]==dis[v]+1){ flag=true; cur[u]=i; break; } } if(flag){ S[top++] = cur[u]; //增加一条边 u=v; continue; } //假设上面没有找到一个可流的相邻点,则改变出发点u的距离(也可觉得是高度)为相邻可流点的最小距离+1 int Mind= n; for(int i=head[u]; i!=-1; i=edg[i].next) if(edg[i].cap>0 && Mind>dis[edg[i].to]){ Mind=dis[edg[i].to]; cur[u]=i; } gap[dis[u]]--; if(gap[dis[u]]==0) return ans; //当dis[u]这样的距离的点没有了,也就不可能从源点出发找到一条增广流路径 //由于汇点到当前点的距离仅仅有一种。那么从源点到汇点必定经过当前点。然而当前点又没能找到可流向的点。那么必定断流 dis[u]=Mind+1; //假设找到一个可流的相邻点,则距离为相邻点距离+1,假设找不到,则为n+1 gap[dis[u]]++; if(u!=sNode) u=edg[S[--top]^1].to; //退一条边 } return ans; } int main(){ int _cas=0,n,m,a; int dir[4][2]={0,1,0,-1,1,0,-1,0}; while(scanf("%d%d",&n,&m)>0){ int s=0,t=n*m+1; init(); for(int i=0; i<n; i++) for(int j=0; j<m; j++){ scanf("%d",&a); if(a==2) addEdg(s , i*m+j+1, INF); else if(a==1) addEdg(i*m+j+1,t , INF); int ti,tj; for(int e=0; e<4; e++){ ti=i+dir[e][0]; tj=j+dir[e][1]; if(ti>=0&&ti<n&&tj>=0&&tj<m) addEdg(i*m+j+1,ti*m+tj+1, 1); } } printf("Case %d:\n%d\n",++_cas,maxFlow_sap(s , t ,t+1)); } }
HDU 3046 Pleasant sheep and big big wolf(最小割)
标签:image minimum icpc 路径 mon emc who prot color
原文地址:http://www.cnblogs.com/jhcelue/p/7105840.html