标签:比较 自己 网卡 红色 window 特征 路由协议 为什么 也会
VLAN(Virtual LAN),翻译成中文是“虚拟局域网”。LAN可以是由少数几台家用计算机构成的网络,也可以是数以百计的计算机构成的企业网络。VLAN所指的LAN特指使用路由器分割的网络——也就是广播域。
局域网(Local Area Network,LAN)是指在某一区域内由多台计算机互联成的计算机组。
广播域:广播是一种信息的传播方式,指网络中的某一设备同时向网络中所有的其它设备发送数据,这个数据所能广播到的范围即为广播域(Broadcast Domain)。即网段上所有设备的集合,能够直接通信的范围。
本来,二层交换机只能构建单一的广播域,不过使用VLAN功能后,它能够将网络分割成多个广播域。
二层交换机:
二层交换机工作于OSI模型的第2层(数据链路层),故而称为二层交换机。二层交换技术的发展已经比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。
那是因为,如果仅有一个广播域,有可能会影响到网络整体的传输性能。如图:
图中,是一个由5台二层交换机(交换机1~5)连接了大量客户机构成的网络。假设这时,计算机A需要与计算机B通信。在基于以太网的通信中,必须在数据帧中指定目标MAC地址才能正常通信,因此计算机A必须先广播“ARP请求(ARP Request)信息”,来尝试获取计算机B的MAC地址。
交换机1收到广播帧(ARP请求)后,会将它转发给除接收端口外的其他所有端口,也就是Flooding了。接着,交换机2收到广播帧后也会Flooding。交换机3、4、5也还会Flooding。最终ARP请求会被转发到同一网络中的所有客户机上。
这个ARP请求原本是为了获得计算机B的MAC地址而发出的。也就是说:只要计算机B能收到就万事大吉了。可是事实上,数据帧却传遍整个网络,导致所有的计算机都收到了它。如此一来,一方面广播信息消耗了网络整体的带宽,另一方面,收到广播信息的计算机还要消耗一部分CPU时间来对它进行处理。造成了网络带宽和CPU运算能力的大量无谓消耗。由交换机连接的网段仍属于同一个广播域,广播数据包会在交换机连接的所有网段上传播,在某些情况下会导致通信拥挤和安全漏洞。
实际上广播帧会非常频繁地出现。利用TCP/IP协议栈通信时,除了前面出现的ARP外,还有可能需要发出DHCP、RIP等很多其他类型的广播信息。
ARP广播,是在需要与其他主机通信时发出的。当客户机请求DHCP服务器分配IP地址时,就必须发出DHCP的广播。而使用RIP作为路由协议时,每隔30秒路由器都会对邻近的其他路由器广播一次路由信息。RIP以外的其他路由协议使用多播传输路由信息,这也会被交换机转发(Flooding)。
下面是一些常见的广播通信:
(1)ARP请求:建立IP地址和MAC地址的映射关系。
(2)RIP:一种路由协议。
(3)DHCP:用于自动设定IP地址的协议。
(4)NetBEUI:Windows下使用的网络协议。
(5)IPX:NovellNetware使用的网络协议。
(6)Apple Talk:苹果公司的Macintosh计算机使用的网络协议。
如果整个网络只有一个广播域,那么一旦发出广播信息,就会传遍整个网络,并且对网络中的主机带来额外的负担。因此,在设计LAN时,需要注意如何才能有效地分割广播域。
分割广播域时,一般都必须使用到路由器。使用路由器后,可以以路由器上的网络接口(LAN Interface)为单位分割广播域。
但是,通常情况下路由器上不会有太多的网络接口,其数目多在1~4个左右。随着宽带连接的普及,宽带路由器(或者叫IP共享器)变得较为常见,但是需要注意的是,它们上面虽然带着多个(一般为4个左右)连接LAN一侧的网络接口,但那实际上是路由器内置的交换机,并不能分割广播域。况且使用路由器分割广播域的话,所能分割的个数完全取决于路由器的网络接口个数,使得用户无法自由地根据实际需要分割广播域。
与路由器相比,二层交换机一般带有多个网络接口。因此如果能使用它分割广播域,那么无疑运用上的灵活性会大大提高。
用于在二层交换机上分割广播域的技术,就是VLAN。通过利用VLAN,我们可以自由设计广播域的构成,提高网络设计的自由度。
首先,在一台未设置任何VLAN的二层交换机上,任何广播帧都会被转发给除接收端口外的所有其他端口(Flooding)。例如,图中第一个计算机发送广播信息后,会被转发给端口2、3、4。
这时,如果在交换机上生成红、蓝两个VLAN;同时设置端口1、2属于红色VLAN、端口3、4属于蓝色VLAN。再从第一台计算机发出广播帧的话,交换机就只会把它转发给同属于一个VLAN的其他端口——也就是同属于红色VLAN的端口2,不会再转发给属于蓝色VLAN的端口。
同样,第三台计算机发送广播信息时,只会被转发给其他属于蓝色VLAN的端口,不会被转发给属于红色VLAN的端口。
这样一来,VLAN通过限制广播帧转发的范围分割了广播域。上图中为了便于说明,以红、蓝两色识别不同的VLAN,在实际使用中则是用“VLAN ID”来区分的。
如果要更为直观地描述VLAN的话,我们可以把它理解为将一台交换机在逻辑上分割成了数台交换机。在一台交换机上生成红、蓝两个VLAN,也可以看作是将一台交换机换做一红一蓝两台虚拟的交换机。
在红、蓝两个VLAN之外生成新的VLAN时,可以想象成又添加了新的交换机。
但是,VLAN生成的逻辑上的交换机是互不相通的。因此,在交换机上设置VLAN后,如果未做其他处理,VLAN间是无法通信的。
明明接在同一台交换机上,但却偏偏无法通信——这个事实也许让人难以接受。但它既是VLAN方便易用的特征,又是使VLAN令人难以理解的原因。
VLAN是广播域。而通常两个广播域之间由路由器连接,广播域之间来往的数据包都是由路由器中继的。因此,VLAN间的通信也需要路由器提供中继服务,这被称作“VLAN间路由”。
VLAN间路由,可以使用普通的路由器,也可以使用三层交换机。不同VLAN间互相通信时需要用到路由功能。
交换机的端口,可以分为两种:访问链接(Access Link),汇聚链接(Trunk Link)。
访问链接:指的是“只属于一个VLAN,且仅向该VLAN转发数据帧”的端口。在大多数情况下,访问链接所连的是客户机。
通常设置VLAN的顺序是:
(1)生成VLAN
(2)设定访问链接(决定各端口属于哪一个VLAN)
设定访问链接的手法,可以是事先固定的、也可以是根据所连的计算机而动态改变设定。前者被称为“静态VLAN”、后者自然就是“动态VLAN”了。
1.1 静态VLAN——基于端口
静态VLAN又被称为基于端口的VLAN(PortBased VLAN)。顾名思义,就是明确指定各端口属于哪个VLAN的设定方法。
由于需要一个个端口地指定,因此当网络中的计算机数目超过一定数字(比如数百台)后,设定操作就会变得烦杂无比。并且,客户机每次变更所连端口,都必须同时更改该端口所属VLAN的设定——这显然不适合那些需要频繁改变拓补结构的网络。
动态VLAN则是根据每个端口所连的计算机,随时改变端口所属的VLAN。这就可以避免上述的更改设定之类的操作。动态VLAN可以大致分为3类:
(1)基于MAC地址的VLAN(MAC Based VLAN)
(2)基于子网的VLAN(Subnet Based VLAN)
(3)基于用户的VLAN(User Based VLAN)
基于MAC地址的VLAN,就是通过查询并记录端口所连计算机上网卡的MAC地址来决定端口的所属。假定有一个MAC地址“A”被交换机设定为属于VLAN “10”,那么不论MAC地址为“A”的这台计算机连在交换机哪个端口,该端口都会被划分到VLAN 10中去。计算机连在端口1时,端口1属于VLAN 10;而计算机连在端口2时,则是端口2属于VLAN 10。
由于是基于MAC地址决定所属VLAN的,因此可以理解为这是一种在OSI的第二层设定访问链接的办法。
但是,基于MAC地址的VLAN,在设定时必须调查所连接的所有计算机的MAC地址并加以登录。而且如果计算机交换了网卡,还是需要更改设定。
基于子网的VLAN,则是通过所连计算机的IP地址,来决定端口所属VLAN的。不像基于MAC地址的VLAN,即使计算机因为交换了网卡或是其他原因导致MAC地址改变,只要它的IP地址不变,就仍可以加入原先设定的VLAN。
因此,与基于MAC地址的VLAN相比,能够更为简便地改变网络结构。IP地址是OSI参照模型中第三层的信息,所以我们可以理解为基于子网的VLAN是一种在OSI的第三层设定访问链接的方法。
基于用户的VLAN,则是根据交换机各端口所连的计算机上当前登录的用户,来决定该端口属于哪个VLAN。这里的用户识别信息,一般是计算机操作系统登录的用户,比如可以是Windows域中使用的用户名。这些用户名信息,属于OSI第四层以上的信息。
总的来说,决定端口所属VLAN时利用的信息在OSI中的层面越高,就越适于构建灵活多变的网络。
综上所述,设定访问链接的手法有静态VLAN和动态VLAN两种,其中动态VLAN又可以继续细分成几个小类。
下表总结了静态VLAN和动态VLAN的相关信息。
种类 |
解说 |
|
静态VLAN(基于端口的VLAN) |
将交换机的各端口固定指派给VLAN |
|
动态VLAN |
基于MAC地址的VLAN |
根据各端口所连计算机的MAC地址设定 |
基于子网的VLAN |
根据各端口所连计算机的IP地址设定 |
|
基于用户的VLAN |
根据端口所连计算机上登录用户设定 |
当我们需要设置跨越多台交换机的VLAN时,此时我们该如何设置呢?
在规划企业级网络时,很有可能会遇到隶属于同一部门的用户分散在同一座建筑物中的不同楼层的情况,这时可能就需要考虑到如何跨越多台交换机设置VLAN的问题了。假设有如下图所示的网络,且需要将不同楼层的A、C和B、D设置为同一个VLAN。
这时最关键的就是“交换机1和交换机2该如何连接才好呢?”
最简单的方法,自然是在交换机1和交换机2上各设一个红、蓝VLAN专用的接口并互联了。
但是,这个办法从扩展性和管理效率来看都不好。例如,在现有网络基础上再新建VLAN时,为了让这个VLAN能够互通,就需要在交换机间连接新的网线。建筑物楼层间的纵向布线是比较麻烦的,一般不能由基层管理人员随意进行。并且,VLAN越多,楼层间(严格地说是交换机间)互联所需的端口也越来越多,交换机端口的利用效率低是对资源的一种浪费、也限制了网络的扩展。
为了避免这种低效率的连接方式,人们想办法让交换机间互联的网线集中到一根上,这时使用的就是汇聚链接(Trunk Link)。
汇聚链接(Trunk Link)指的是能够转发多个不同VLAN的通信的端口。
汇聚链路上流通的数据帧,都被附加了用于识别分属于哪个VLAN的特殊信息。
现在再让我们回过头来考虑一下刚才那个网络如果采用汇聚链路又会如何呢?用户只需要简单地将交换机间互联的端口设定为汇聚链接就可以了。这时使用的网线还是普通的UTP线,而不是什么其他的特殊布线。图例中是交换机间互联,因此需要用交叉线来连接。
接下来,让我们具体看看汇聚链接是如何实现跨越交换机间的VLAN的。
A发送的数据帧从交换机1经过汇聚链路到达交换机2时,在数据帧上附加了表示属于红色VLAN的标记。
交换机2收到数据帧后,经过检查VLAN标识发现这个数据帧是属于红色VLAN的,因此去除标记后根据需要将复原的数据帧只转发给其他属于红色VLAN的端口。这时的转送,是指经过确认目标MAC地址并与MAC地址列表比对后只转发给目标MAC地址所连的端口。只有当数据帧是一个广播帧、多播帧或是目标不明的帧时,它才会被转发到所有属于红色VLAN的端口。
通过汇聚链路时附加的VLAN识别信息,有可能支持标准的“IEEE 802.1Q”协议,也可能是Cisco产品独有的“ISL(Inter Switch Link)”。如果交换机支持这些规格,那么用户就能够高效率地构筑横跨多台交换机的VLAN。
另外,汇聚链路上流通着多个VLAN的数据,自然负载较重。因此,在设定汇聚链接时,有一个前提就是必须支持100Mbps以上的传输速度。
另外,默认条件下,汇聚链接会转发交换机上存在的所有VLAN的数据。换一个角度看,可以认为汇聚链接(端口)同时属于交换机上所有的VLAN。由于实际应用中很可能并不需要转发所有VLAN的数据,因此为了减轻交换机的负载、也为了减少对带宽的浪费,我们可以通过用户设定限制能够经由汇聚链路互联的VLAN。
我们已经知道两台计算机即使连接在同一台交换机上,只要所属的VLAN不同就无法直接通信。接下来我们将要学习的就是如何在不同的VLAN间进行路由,使分属不同VLAN的主机能够互相通信。
路由:是指把数据从一个地方传送到另一个地方的行为和动作;路由器:正是执行这种行为动作的机器。
为什么不同VLAN间不通过路由就无法通信?在LAN内的通信,必须在数据帧头中指定通信目标的MAC地址。而为了获取MAC地址,TCP/IP协议下使用的是ARP。ARP解析MAC地址的方法,则是通过广播。也就是说,如果广播报文无法到达,那么就无从解析MAC地址,亦即无法直接通信。
计算机分属不同的VLAN,也就意味着分属不同的广播域,自然收不到彼此的广播报文。因此,属于不同VLAN的计算机之间无法直接互相通信。为了能够在VLAN间通信,需要利用OSI参照模型中更高一层——网络层的信息(IP地址)来进行路由。
路由功能,一般主要由路由器提供。但在今天的局域网里,我们也经常利用带有路由功能的交换机——三层交换机(Layer 3 Switch)来实现。接下来就让我们分别看看使用路由器和三层交换机进行VLAN间路由时的情况。
在使用路由器进行VLAN间路由时,与构建横跨多台交换机的VLAN时的情况类似,我们还是会遇到“该如何连接路由器与交换机”这个问题。路由器和交换机的接线方式,大致有以下两种:
(1)将路由器与交换机上的每个VLAN分别连接
(2)不论VLAN有多少个,路由器与交换机都只用一条网线连接
把路由器和交换机以VLAN为单位分别用网线连接。将交换机上用于和路由器互联的每个端口设为访问链接(Access Link),然后分别用网线与路由器上的独立端口互联。如下图所示,交换机上有2个VLAN,那么就需要在交换机上预留2个端口用于与路由器互联;路由器上同样需要有2个端口;两者之间用2条网线分别连接。
如果采用这个办法,大家应该不难想象它的扩展性很成问题。每增加一个新的VLAN,都需要消耗路由器的端口和交换机上的访问链接,而且还需要重新布设一条网线。而路由器,通常不会带有太多LAN接口的。新建VLAN时,为了对应增加的VLAN所需的端口,就必须将路由器升级成带有多个LAN接口的高端产品,这部分成本、还有重新布线所带来的开销,都使得这种接线法成为一种不受欢迎的办法。
那么,第二种办法“不论VLAN数目多少,都只用一条网线连接路由器与交换机”呢?当使用一条网线连接路由器与交换机、进行VLAN间路由时,需要用到汇聚链接。
具体实现过程为:首先将用于连接路由器的交换机端口设为汇聚链接(Trunk Link),而路由器上的端口也必须支持汇聚链路。双方用于汇聚链路的协议自然也必须相同。接着在路由器上定义对应各个VLAN的“子接口”(Sub Interface)。尽管实际与交换机连接的物理端口只有一个,但在理论上我们可以把它分割为多个虚拟端口。
VLAN将交换机从逻辑上分割成了多台,因而用于VLAN间路由的路由器,也必须拥有分别对应各个VLAN的虚拟接口。
采用这种方法的话,即使之后在交换机上新建VLAN,仍只需要一条网线连接交换机和路由器。用户只需要在路由器上新设一个对应新VLAN的子接口就可以了。与前面的方法相比,扩展性要强得多,也不用担心需要升级LAN接口数不足的路由器或是重新布线。
使用汇聚链路连接交换机与路由器时,VLAN间路由是如何进行的。如下图所示,为各台计算机以及路由器的子接口设定IP地址。
红色VLAN(VLAN ID=1)的网络地址为192.168.1.0/24,蓝色VLAN(VLAN ID=2)的网络地址为192.168.2.0/24。各计算机的MAC地址分别为A/B/C/D,路由器汇聚链接端口的MAC地址为R。交换机通过对各端口所连计算机MAC地址的学习,生成如下的MAC地址列表。
端口 |
MAC地址 |
VLAN |
1 |
A |
1 |
2 |
B |
1 |
3 |
C |
2 |
4 |
D |
2 |
5 |
- |
- |
6 |
R |
汇聚 |
首先考虑计算机A与同一VLAN内的计算机B之间通信时的情形。
计算机A发出ARP请求信息,请求解析B的MAC地址。交换机收到数据帧后,检索MAC地址列表中与收信端口同属一个VLAN的表项。结果发现,计算机B连接在端口2上,于是交换机将数据帧转发给端口2,最终计算机B收到该帧。收发信双方同属一个VLAN之内的通信,一切处理均在交换机内完成。
我们来考虑一下计算机A与计算机C之间通信时的情况。
计算机A从通信目标的IP地址(192.168.2.1)得出C与本机不属于同一个网段。因此会向设定的默认网关(DefaultGateway,GW)转发数据帧。在发送数据帧之前,需要先用ARP获取路由器的MAC地址。
得到路由器的MAC地址R后,接下来就是按图中所示的步骤发送往C去的数据帧。①的数据帧中,目标MAC地址是路由器的地址R、但内含的目标IP地址仍是最终要通信的对象C的地址。
交换机在端口1上收到①的数据帧后,检索MAC地址列表中与端口1同属一个VLAN的表项。由于汇聚链路会被看作属于所有的VLAN,因此这时交换机的端口6也属于被参照对象。这样交换机就知道往MAC地址R发送数据帧,需要经过端口6转发。
从端口6发送数据帧时,由于它是汇聚链接,因此会被附加上VLAN识别信息。由于原先是来自红色VLAN的数据帧,因此如图中②所示,会被加上红色VLAN的识别信息后进入汇聚链路。路由器收到②的数据帧后,确认其VLAN识别信息,由于它是属于红色VLAN的数据帧,因此交由负责红色VLAN的子接口接收。
接着,根据路由器内部的路由表,判断该向哪里中继。
由于目标网络192.168.2.0/24是蓝色VLAN,且该网络通过子接口与路由器直连,因此只要从负责蓝色VLAN的子接口转发就可以了。这时,数据帧的目标MAC地址被改写成计算机C的目标地址;并且由于需要经过汇聚链路转发,因此被附加了属于蓝色VLAN的识别信息。这就是图中③的数据帧。
交换机收到③的数据帧后,根据VLAN标识信息从MAC地址列表中检索属于蓝色VLAN的表项。由于通信目标——计算机C连接在端口3上、且端口3为普通的访问链接,因此交换机会将数据帧去除VLAN识别信息后(数据帧④)转发给端口3,最终计算机C才能成功地收到这个数据帧。
进行VLAN间通信时,即使通信双方都连接在同一台交换机上,也必须经过:“发送方——交换机——路由器——交换机——接收方”这样一个流程。
4. 三层交换机
4.1 使用路由器进行VLAN间路由的问题
现在,我们知道只要能提供VLAN间路由,就能够使分属不同VLAN的计算机互相通信。但是,如果使用路由器进行VLAN间路由的话,随着VLAN之间流量的不断增加,很可能导致路由器成为整个网络的瓶颈。
交换机使用被称为ASIC(ApplicationSpecified Integrated Circuit)的专用硬件芯片处理数据帧的交换操作,在很多机型上都能实现以缆线速度(Wired Speed)交换。而路由器,则基本上是基于软件处理的。即使以缆线速度接收到数据包,也无法在不限速的条件下转发出去,因此会成为速度瓶颈。就VLAN间路由而言,流量会集中到路由器和交换机互联的汇聚链路部分,这一部分尤其特别容易成为速度瓶颈。并且从硬件上看,由于需要分别设置路由器和交换机,在一些空间狭小的环境里可能连设置的场所都成问题。
4.2 三层交换机
为了解决上述问题,三层交换机应运而生。三层交换机,本质上就是“带有路由功能的(二层)交换机”。路由属于OSI参照模型中第三层网络层的功能,因此带有第三层路由功能的交换机才被称为“三层交换机”。
关于三层交换机的内部结构,可以参照下面的简图:
在一台本体内,分别设置了交换机模块和路由器模块;而内置的路由模块与交换模块相同,使用ASIC硬件处理路由。因此,与传统的路由器相比,可以实现高速路由。并且,路由与交换模块是汇聚链接的,由于是内部连接,可以确保相当大的带宽。
4.2.1 使用三层交换机进行VLAN间路由(VLAN内通信,同一VLAN)
在三层交换机内部数据究竟是怎样传播的呢?基本上,它和使用汇聚链路连接路由器与交换机时的情形相同。
假设有如下图所示的4台计算机与三层交换机互联。当使用路由器连接时,一般需要在LAN接口上设置对应各VLAN的子接口;而三层交换机则是在内部生成“VLAN接口”(VLAN Interface)。VLAN接口,是用于各VLAN收发数据的接口。
为了与使用路由器进行VLAN间路由对比,让我们同样来考虑一下计算机A与计算机B之间通信时的情况。首先是目标地址为B的数据帧被发到交换机;通过检索同一VLAN的MAC地址列表发现计算机B连在交换机的端口2上;因此将数据帧转发给端口2。
4.2.2 使用三层交换机进行VLAN间路由(VLAN间通信,不同VLAN)
接下来设想一下计算机A与计算机C间通信时的情形。针对目标IP地址,计算机A可以判断出通信对象不属于同一个网络,因此向默认网关发送数据(Frame 1)。
交换机通过检索MAC地址列表后,经由内部汇聚链接,将数据帧转发给路由模块。在通过内部汇聚链路时,数据帧被附加了属于红色VLAN的VLAN识别信息(Frame 2)。
路由模块在收到数据帧时,先由数据帧附加的VLAN识别信息分辨出它属于红色VLAN,据此判断由红色VLAN接口负责接收并进行路由处理。因为目标网络192.168.2.0/24是直连路由器的网络、且对应蓝色VLAN;因此,接下来就会从蓝色VLAN接口经由内部汇聚链路转发回交换模块。在通过汇聚链路时,这次数据帧被附加上属于蓝色VLAN的识别信息(Frame 3)。
交换机收到这个帧后,检索蓝色VLAN的MAC地址列表,确认需要将它转发给端口3。由于端口3是通常的访问链接,因此转发前会先将VLAN识别信息去除(Frame 4)。最终,计算机C成功地收到交换机转发来的数据帧。
整体的流程,与使用外部路由器时的情况十分相似——都需要经过“发送方→交换模块→路由模块→交换模块→接收方”。
标签:比较 自己 网卡 红色 window 特征 路由协议 为什么 也会
原文地址:http://www.cnblogs.com/shanyingwufeng/p/7128227.html