标签:相关 循环 open 顺序 font 方式 做了 adaboost axis
转载链接:http://blog.csdn.net/zy1034092330/article/details/62044941
参考博客:http://blog.csdn.net/WoPawn/article/details/52223282?locationNum=7
进经过RCNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster RCN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine),classification都整合在了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显。
图1 Faster CNN基本结构(来自原论文)
缩进依作者看来,如图1,Faster RCNN其实可以分为4个主要内容:
所以本文以上述4个内容作为切入点介绍Faster RCNN网络。
缩进图2展示了Python版本中的VGG16模型中的faster_rcnn_test.pt的网络结构,可以清晰的看到该网络对于一副任意大小PxQ的图像,首先缩放至固定大小MxN,然后将MxN图像送入网络;而Conv layers中包含了13个conv层+13个relu层+4个pooling层;RPN网络首先经过3x3卷积,再分别生成foreground anchors与bounding box regression偏移量,然后计算出proposals;而Roi Pooling层则利用proposals从feature maps中提取proposal feature送入后续全连接和softmax网络作classification(即分类proposal到底是什么object)。
path:${py-faster-rcnn-root}/models/pascal_voc/VGG16/faster_rcnn_alt_opt/faster_rcnn_test.pt
图2 faster_rcnn_test.pt网络结构(放大网页看大图)
缩进Conv layers包含了conv,pooling,relu三种层。以python版本中的VGG16模型中的faster_rcnn_test.pt的网络结构为例,如图2,Conv layers部分共有13个conv层,13个relu层,4个pooling层。这里有一个非常容易被忽略但是又无比重要的信息,在Conv layers中:
为何重要?在Faster RCNN Conv layers中对所有的卷积都做了扩边处理(pad=1,即填充一圈0),导致原图变为(M+2)x(N+2)大小,再做3x3卷积后输出MxN。正是这种设置,导致Conv layers中的conv层不改变输入和输出矩阵大小。如图3:
图3
类似的是,Conv layers中的pooling层kernel_size=2,stride=2。这样每个经过pooling层的MxN矩阵,都会变为(M/2)*(N/2)大小。综上所述,在整个Conv layers中,conv和relu层不改变输入输出大小,只有pooling层使输出长宽都变为输入的1/2。
缩进那么,一个MxN大小的矩阵经过Conv layers固定变为(M/16)x(N/16)!这样Conv layers生成的featuure map中都可以和原图对应起来。
缩进经典的检测方法生成检测框都非常耗时,如OpenCV adaboost使用滑动窗口+图像金字塔生成检测框;或如RCNN使用SS(Selective Search)方法生成检测框。而Faster RCNN则抛弃了传统的滑动窗口和SS方法,直接使用RPN生成检测框,这也是Faster RCNN的巨大优势,能极大提升检测框的生成速度。
图4 RPN网络结构
上图4展示了RPN网络的具体结构。可以看到RPN网络实际分为2条线,上面一条通过softmax分类anchors获得foreground和background(检测目标是foreground),下面一条用于计算对于anchors的bounding box regression偏移量,以获得精确的proposal。而最后的Proposal层则负责综合foreground anchors和bounding box regression偏移量获取proposals,同时剔除太小和超出边界的proposals。其实整个网络到了Proposal Layer这里,就完成了相当于目标定位的功能。
缩进提到RPN网络,就不能不说anchors。所谓anchors,实际上就是一组由rpn/generate_anchors.py生成的矩形。直接运行作者demo中的generate_anchors.py可以得到以下输出:
其中每行的4个值[x1,y1,x2,y2]代表矩形左上和右下角点坐标。9个矩形共有3种形状,长宽比为大约为:width:height = [1:1, 1:2, 2:1]三种,如图6。实际上通过anchors就引入了检测中常用到的多尺度方法。
图6 anchors示意图
注:关于上面的anchors size,其实是根据检测图像设置的。在python demo中,会把任意大小的输入图像reshape成800x600(即图2中的M=800,N=600)。再回头来看anchors的大小,anchors中长宽1:2中最大为352x704,长宽2:1中最大736x384,基本是cover了800x600的各个尺度和形状。
那么这9个anchors是做什么的呢?借用Faster RCNN论文中的原图,如图7,遍历Conv layers计算获得的feature maps,为每一个点都配备这9种anchors作为初始的检测框。这样做获得检测框很不准确,不用担心,后面还有2次bounding box regression可以修正检测框位置。
图7
解释一下上面这张图的数字。
注意,在本文讲解中使用的VGG conv5 num_output=512,所以是512d,其他类似.....
图9
缩进对于窗口一般使用四维向量(x, y, w, h)表示,分别表示窗口的中心点坐标和宽高。对于图 10,红色的框A代表原始的Foreground Anchors,绿色的框G代表目标的GT,我们的目标是寻找一种关系,使得输入原始的anchor A经过映射得到一个跟真实窗口G更接近的回归窗口G‘,即:给定A=(Ax, Ay, Aw, Ah),寻找一种映射f,使得f(Ax, Ay, Aw, Ah)=(G‘x, G‘y, G‘w, G‘h),其中(G‘x, G‘y, G‘w, G‘h)≈(Gx, Gy, Gw, Gh)。
图10
那么经过何种变换才能从图6中的A变为G‘呢? 比较简单的思路就是:
缩进 1. 先做平移
缩进 2. 再做缩放
缩进观察上面4个公式发现,需要学习的是dx(A),dy(A),dw(A),dh(A)这四个变换。当输入的anchor与GT相差较小时,可以认为这种变换是一种线性变换, 那么就可以用线性回归来建模对窗口进行微调(注意,只有当anchors和GT比较接近时,才能使用线性回归模型,否则就是复杂的非线性问题了)。对应于Faster RCNN原文,平移量(tx, ty)与尺度因子(tw, th)如下:
缩进接下来的问题就是如何通过线性回归获得dx(A),dy(A),dw(A),dh(A)了。线性回归就是给定输入的特征向量X, 学习一组参数W, 使得经过线性回归后的值跟真实值Y(即GT)非常接近,即Y=WX。对于该问题,输入X是一张经过num_output=1的1x1卷积获得的feature map,定义为Φ;同时还有训练传入的GT,即(tx, ty, tw, th)。输出是dx(A),dy(A),dw(A),dh(A)四个变换。那么目标函数可以表示为:
其中Φ(A)是对应anchor的feature map组成的特征向量,w是需要学习的参数,d(A)是得到的预测值(*表示 x,y,w,h,也就是每一个变换对应一个上述目标函数)。为了让预测值(tx, ty, tw, th)与真实值最小,得到损失函数:
函数优化目标为:
缩进在了解bounding box regression后,再回头来看RPN网络第二条线路,如图11。
图11 RPN中的bbox reg
先来看一看上图11中1x1卷积的caffe prototxt定义:
可以看到其num_output=36,即经过该卷积输出图像为WxHx36,在caffe blob存储为[1, 36, H, W]。与上文中fg/bg anchors存储为[1, 18, H, W]类似,这里相当于feature maps每个点都有9个anchors,每个anchors又都有4个用于回归的[dx(A),dy(A),dw(A),dh(A)]变换量。利用上面的的计算公式即可从foreground anchors回归出proposals。
缩进而RoI Pooling层则负责收集proposal,并计算出proposal feature maps,送入后续网络。从图3中可以看到Rol pooling层有2个输入:
缩进先来看一个问题:对于传统的CNN(如AlexNet,VGG),当网络训练好后输入的图像尺寸必须是固定值,同时网络输出也是固定大小的vector or matrix。如果输入图像大小不定,这个问题就变得比较麻烦。有2种解决办法:
图13 crop与warp破坏图像原有结构信息
两种办法的示意图如图13,可以看到无论采取那种办法都不好,要么crop后破坏了图像的完整结构,要么warp破坏了图像原始形状信息。回忆RPN网络生成的proposals的方法:对foreground anchors进行bound box regression,那么这样获得的proposals也是大小形状各不相同,即也存在上述问题。所以Faster RCNN中提出了RoI Pooling解决这个问题(需要说明,RoI Pooling确实是从SPP发展而来,但是限于篇幅这里略去不讲,有兴趣的读者可以自行查阅相关论文)。
缩进分析之前先来看看RoI Pooling Layer的caffe prototxt的定义:
其中有新参数pooled_w=pooled_h=7,另外一个参数spatial_scale=1/16应该能够猜出大概吧。
缩进RoI Pooling layer forward过程:在之前有明确提到:proposal=[x1, y1, x2, y2]是对应MxN尺度的,所以首先使用spatial_scale参数将其映射回MxN大小的feature maps尺度(这里来回多次映射,是有点绕);之后将每个proposal水平和竖直都分为7份,对每一份都进行max pooling处理。这样处理后,即使大小不同的proposal,输出结果都是7x7大小,实现了fixed-length output。
图14 proposal示意图
从PoI Pooling获取到7x7=49大小的proposal feature maps后,送入后续网络,可以看到做了如下2件事:
图16 全连接层示意图
其计算公式如下:
其中W和bias B都是预先训练好的,即大小是固定的,当然输入X和输出Y也就是固定大小。所以,这也就印证了之前Poi Pooling的必要性。到这里,我想其他内容已经很容易理解,不在赘述了。
可以看到训练过程类似于一种“迭代”的过程,不过只循环了2次。至于只循环了2次的原因是应为作者提到:"A similar alternating training can be run for more iterations, but we have observed negligible improvements",即循环更多次没有提升了。接下来本章以上述6个步骤讲解训练过程。
缩进在该步骤中,首先读取RBG提供的预训练好的model(本文使用VGG),开始迭代训练。来看看stage1_rpn_train.pt网络结构,如图17。
图17 stage1_rpn_train.pt
(考虑图片大小,Conv Layers中所有的层都画在一起了,如红圈所示,后续图都如此处理)
与检测网络类似的是,依然使用Conv Layers提取feature maps。整个网络使用的Loss如下:
上述公式中,i表示anchors index,pi表示foreground softmax predict概率,pi*代表对应的GT predict概率(即当第i个anchor与GT间IoU>0.7,认为是该anchor是foreground,pi*=1;反之IoU<0.3时,认为是该anchor是background,pi*=0;至于那些0.3<IoU<0.7的anchor则不参与训练);t代表predict bounding box,t*代表对应foreground anchor对应的GT box。可以看到,整个Loss分为2部分:
缩进由于在实际过程中,Ncls和Nreg差距过大,用参数λ平衡二者(如Ncls=256,Nreg=2400时设置λ=10),使总的网络Loss计算过程中能够均匀考虑2种Loss。这里比较重要是Lreg使用的soomth L1 loss,计算公式如下:
缩进了解数学原理后,反过来看图17:
这样,公式与代码就完全对应了。
缩进在该步骤中,利用之前的RPN网络,获取proposal rois,同时获取foreground softmax probability,如图18,然后将获取的信息保存在python pickle文件中。该网络本质上和检测中的RPN网络一样,没有什么区别。
缩进读取之前保存的pickle文件,获取proposals与foreground probability。从data层输入网络。然后:
这样就可以训练最后的识别softmax与最终的bounding regression了,如图19。
图19 stage1_fast_rcnn_train.pt
之后的训练都是大同小异,不再赘述了。
综上:
(1)rpn_conv/3*3层后接两个分别为36-d和18-d的1*1卷积层,分别用于cls和reg;
(2)conv层均是kernel size=3*3,pad=1,stride=1,所以卷积前后不改变大小,只有pool层起作用,原输入为M*N,经过conv5前面这些层后变为(M/16)*(N/16),从而实现了feature map 和原始图像的一一映射(16是固定缩放比例);
(3)proposal层负责总和foreground anchors和BB偏移量来获取proposals,同时剔除太小和超出边界的proposals;
(4)对于ZF,conv5的feature map上的每一个点经过两个并行的1*1卷积,分别由256-d的feature变为cls=2k(2*9)个scores,reg=4k(4*9)个box;
(5)上文中的画图工具为:
http://ethereon.github.io/netscope/#/editor
非常好用~
标签:相关 循环 open 顺序 font 方式 做了 adaboost axis
原文地址:http://www.cnblogs.com/zf-blog/p/7142463.html