码迷,mamicode.com
首页 > 其他好文 > 详细

【bzoj1604】[Usaco2008 Open]Cow Neighborhoods 奶牛的邻居 并查集+Treap/STL-set

时间:2017-07-11 09:32:57      阅读:210      评论:0      收藏:0      [点我收藏+]

标签:for   ras   绝对值   std   奶牛   并且   输入   return   pre   

题目描述

了解奶牛们的人都知道,奶牛喜欢成群结队.观察约翰的N(1≤N≤100000)只奶牛,你会发现她们已经结成了几个“群”.每只奶牛在吃草的时候有一个独一无二的位置坐标Xi,Yi(l≤Xi,Yi≤[1..10^9];Xi,Yi∈整数.当满足下列两个条件之一,两只奶牛i和j是属于同一个群的:
1.两只奶牛的曼哈顿距离不超过C(1≤C≤10^9),即lXi - xil+IYi - Yil≤C.
2.两只奶牛有共同的邻居.即,存在一只奶牛k,使i与k,j与k均同属一个群.
给出奶牛们的位置,请计算草原上有多少个牛群,以及最大的牛群里有多少奶牛

输入

1行输入N和C,之后N行每行输入一只奶牛的坐标.

输出

仅一行,先输出牛群数,再输出最大牛群里的牛数,用空格隔开.

样例输入

4 2
1 1
3 3
2 2
10 10

样例输出

2 3


题解

为了练习Treap找到的这道略神的题

首先直接处理曼哈顿距离不是特别容易,我们可以把所有的点绕着原点逆时针旋转45°,这样原来的点$(x,y)$就变为了$(\frac{x-y}{\sqrt 2},\frac{x+y}{\sqrt 2})$,查询的区域变为了矩形范围,切比雪夫距离(横纵坐标差的绝对值最大值)不超过$\frac c{\sqrt 2}$。

然后约掉$\frac 1{\sqrt 2}$,就变为普通的矩形区域查询问题。

先将所有变换后的点按照横坐标排序,然后从左往右扫,将左面横坐标不满足条件的点删除。然后考虑连边:我们没有必要将所有在范围之内的点与当前点连边,只需要将当前点与第一个纵坐标比它大的点、第一个纵坐标比它小的点,如果满足条件就连边。

证明:使用数学归纳法

两个点之间使用这种方法是一定能够连上的。

如果k个点连上了,且纵坐标都比当前点大,并且横坐标满足条件,如果这种方法是不成立的,那么不妨设y1、y2,其中y1为纵坐标最接近当前点,y2为要连的点,我们要证的就是“当前点与y2有边,与y1没有边”是假命题。证明显然~

纵坐标比当前点小的时候同理。

于是k+1个点也能连上。命题得证。

回到题中,删点加点、查询前驱后继可以使用平衡树,维护连通性可以使用并查集。最后扫一遍每个点即可得到答案。

时间复杂度$O(n\log n)$。

事实上,STL的set比Treap还快~

Treap:

#include <cstdio>
#include <cstdlib>
#include <algorithm>
#define N 100010
using namespace std;
struct data
{
	int x , y;
}a[N];
typedef pair<int , int> pr;
int l[N] , r[N] , rnd[N] , tot , root , f[N] , tmp , num[N];
pr w[N];
bool cmp(data a , data b)
{
	return a.x < b.x;
}
void zig(int &k)
{
	int t = l[k];
	l[k] = r[t] , r[t] = k , k = t;
}
void zag(int &k)
{
	int t = r[k];
	r[k] = l[t] , l[t] = k , k = t;
}
void insert(int &k , pr x)
{
	if(!k) k = ++tot , w[k] = x , rnd[k] = rand();
	else if(x < w[k])
	{
		insert(l[k] , x);
		if(rnd[l[k]] < rnd[k]) zig(k);
	}
	else
	{
		insert(r[k] , x);
		if(rnd[r[k]] < rnd[k]) zag(k);
	}
}
void del(int &k , pr x)
{
	if(x == w[k])
	{
		if(!l[k] || !r[k]) k = l[k] + r[k];
		else if(rnd[l[k]] < rnd[k]) zig(k) , del(r[k] , x);
		else zag(k) , del(l[k] , x);
	}
	else if(x < w[k]) del(l[k] , x);
	else del(r[k] , x);
}
void pre(int k , pr x)
{
	if(!k) return;
	else if(x < w[k]) pre(l[k] , x);
	else tmp = w[k].second , pre(r[k] , x);
}
void sub(int k , pr x)
{
	if(!k) return;
	else if(x < w[k]) tmp = w[k].second , sub(l[k] , x);
	else sub(r[k] , x);
}
int find(int x)
{
	return x == f[x] ? x : f[x] = find(f[x]);
}
int main()
{
	int n , c , i , u , v , p = 1 , ans = 0 , mx = 0;
	scanf("%d%d" , &n , &c);
	for(i = 1 ; i <= n ; i ++ ) scanf("%d%d" , &u , &v) , a[i].x = u - v , a[i].y = u + v , f[i] = i;
	sort(a + 1 , a + n + 1 , cmp);
	for(i = 1 ; i <= n ; i ++ )
	{
		while(p < i && a[i].x - a[p].x > c) del(root , pr(a[p].y , p)) , p ++ ;
		tmp = 0 , pre(root , pr(a[i].y , i));
		if(tmp && a[i].y - a[tmp].y <= c) f[find(i)] = find(tmp);
		tmp = 0 , sub(root , pr(a[i].y , i));
		if(tmp && a[tmp].y - a[i].y <= c) f[find(i)] = find(tmp);
		insert(root , pr(a[i].y , i));
	}
	for(i = 1 ; i <= n ; i ++ ) num[find(i)] ++ ;
	for(i = 1 ; i <= n ; i ++ )
		if(num[i])
			ans ++ , mx = max(mx , num[i]);
	printf("%d %d\n" , ans , mx);
	return 0;
}

STL-set:

#include <cstdio>
#include <algorithm>
#include <set>
#define N 100010
using namespace std;
struct data
{
    int x , y;
}a[N];
typedef pair<int , int> pr;
set<pr> s;
set<pr>::iterator it;
int f[N] , num[N];
bool cmp(data a , data b)
{
    return a.x < b.x;
}
int find(int x)
{
    return x == f[x] ? x : f[x] = find(f[x]);
}
int main()
{
    int n , c , i , u , v , p = 1 , ans = 0 , mx = 0;
    scanf("%d%d" , &n , &c);
    for(i = 1 ; i <= n ; i ++ ) scanf("%d%d" , &u , &v) , a[i].x = u - v , a[i].y = u + v , f[i] = i;
    sort(a + 1 , a + n + 1 , cmp);
    for(i = 1 ; i <= n ; i ++ )
    {
        while(p < i && a[i].x - a[p].x > c) s.erase(pr(a[p].y , p)) , p ++ ;
        it = s.upper_bound(pr(a[i].y , i));
        if(it != s.end() && it->first - a[i].y <= c) f[find(i)] = find(it->second);
        if(it != s.begin() && a[i].y - (--it)->first <= c) f[find(i)] = find(it->second);
        s.insert(pr(a[i].y , i));
    }
    for(i = 1 ; i <= n ; i ++ ) num[find(i)] ++ ;
    for(i = 1 ; i <= n ; i ++ )
        if(num[i])
            ans ++ , mx = max(mx , num[i]);
    printf("%d %d\n" , ans , mx);
    return 0;
}

 

 

【bzoj1604】[Usaco2008 Open]Cow Neighborhoods 奶牛的邻居 并查集+Treap/STL-set

标签:for   ras   绝对值   std   奶牛   并且   输入   return   pre   

原文地址:http://www.cnblogs.com/GXZlegend/p/7148774.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!