标签:logs 测试数据 情况 接下来 cst star 2.3 div 注意
小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。
作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值。但他已经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验。
本题中我们将考虑游戏的一个简化版模型。 玩家有一套卡牌,共 n张。游戏时,玩家将 n 张卡牌排列成某种顺序,排列后将卡牌按从前往后依次编号为 1 ~ n。本题中,顺序已经确定,即为输入的顺序。每张卡牌都有一个技能。第 i 张卡牌的技能发动概率为 pi,如果成功发动,则会对敌方造成di点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因素以及小K非洲血统的考虑,pi不会为 0,也不会为 1,即 0 < pi < 1。 一局游戏一共有 r 轮。在每一轮中,系统将从第一张卡牌开始,按照顺序依次考虑每张卡牌。在一轮中,对于依次考虑的每一张卡牌:
1如果这张卡牌在这一局游戏中已经发动过技能,则
1.1 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌); 否则(是最后一张),结束这一轮游戏。
2否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张
2.1将其以 pi的概率发动技能。
2.2如果技能发动,则对敌方造成 di点伤害,并结束这一轮。
2.3如果这张卡牌已经是最后一张(即 i 等于n),则结束这一轮;否则,考虑下一张卡牌。
请帮助小 K 求出这一套卡牌在一局游戏中能造成的伤害的期望值。
输入格式:
输入文件的第一行包含一个整数 T,代表测试数据组数。 接下来一共 T 组数据。 每组数据的第一行包含两个用空格分开的整数 n和r,分别代表卡牌的张数和游戏的轮数。 接下来 n行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第i 行的两个数为 pi和 di,分别代表第 i 张卡牌技能发动的概率(实数)和技能发动造成的伤害(整数)。保证 pi最多包含 4位小数,且为一个合法的概率。
输出格式:
对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。建议输出10 位小数。
1 3 2 0.5000 2 0.3000 3 0.9000 1
3.2660250000
一共有 13 种可能的情况:
概率为 0.15,伤害为5。
概率为 0.315,伤害为3。
概率为 0.035,伤害为2。
概率为 0.075,伤害为5。
概率为 0.0675,伤害为4。
概率为 0.0075,伤害为3。
概率为 0.1575,伤害为3。
概率为 0.04725,伤害为4。
概率为 0.11025,伤害为1。
概率为 0.0175,伤害为2。
概率为 0.00525,伤害为3。
概率为 0.011025,伤害为1。
概率为 0.001225,伤害为0。
造成伤害的期望值为概率与对应伤害乘积之和,为 3.266025。
对于所有测试数据, 1 <= T <= 444, 1 <= n <= 220, 0 <= r <= 132, 0 < pi < 1, 0 <= di <= 1000。
除非备注中有特殊说明,数据中 pi与di均为随机生成。
请注意可能存在的实数精度问题,并采取适当措施。
题解:
大意是有n个技能,每个有pi几率释放,释放后有di伤害,求伤害的期望
算出每张牌的期望,麻烦的是打出一个技能后会消失,会对后面的期望造成影响
这种情况可以用动归,f[i][j]表示前i张还剩j轮的期望
f[i+1][j-1]+=f[i][j]*(1-(1-p[i+1])^j)触发
f[i+1][j]+=f[i][j]*(1-p[i+1])^j 没有触发
1 #include<iostream> 2 #include<cstdio> 3 #include<algorithm> 4 #include<cstring> 5 using namespace std; 6 int n,r; 7 double f[1001][1001],ans,p[1001],d[1001],po; 8 int main() 9 {int T,i,j; 10 cin>>T; 11 while (T--) 12 { 13 scanf("%d%d",&n,&r); 14 memset(f,0,sizeof(f)); 15 ans=0; 16 for (i=1;i<=n;i++) 17 { 18 scanf("%lf%lf",&p[i],&d[i]); 19 } 20 f[0][r]=1; 21 for (i=0;i<n;i++) 22 { 23 po=1; 24 for (j=0;j<=r;j++) 25 { 26 f[i+1][j]+=f[i][j]*po; 27 if (j>0) 28 f[i+1][j-1]+=f[i][j]*(1-po); 29 ans+=f[i][j]*(1-po)*d[i+1]; 30 po*=1-p[i+1]; 31 } 32 } 33 printf("%.10lf\n",ans); 34 } 35 }
标签:logs 测试数据 情况 接下来 cst star 2.3 div 注意
原文地址:http://www.cnblogs.com/Y-E-T-I/p/7191508.html