码迷,mamicode.com
首页 > 其他好文 > 详细

hadoop+spark详细的部署过程

时间:2017-07-18 16:43:50      阅读:307      评论:0      收藏:0      [点我收藏+]

标签:hadoop

准备软件包

1、hadoop-2.7.2.tar.gz

http://mirror.bit.edu.cn/apache/hadoop/common/

2、scala-2.10.4.tgz

http://www.scala-lang.org/download/2.10.4.html

3、spark-2.0.0-bin-hadoop2.7.tar

http://spark.apache.org/downloads.html


一、环境准备

3Centos7的虚拟机:

172.16.92.115 spark01       #namenode

172.16.92.117 spark02       #datanode

172.16.92.80 spark03        #datanode

1.1、防火墙、selinux关闭

1.2、配置hosts设置ssh免密码登录,使三台机能够互访

[root@spark01 ~]# vi /etc/hosts
172.16.92.115 spark01       #namenode
172.16.92.117 spark02       #datanode
172.16.92.80 spark03        #datanode
[root@spark01 ~]# ssh-keygen
[root@spark01 ~]# ssh-copy-id spark01
[root@spark01 ~]# ssh-copy-id spark02
[root@spark01 ~]# ssh-copy-id spark03
[root@spark01 ~]# scp /etc/hosts spark02:/etc/
[root@spark01 ~]# scp /etc/hosts spark03:/etc/
[root@spark02 ~]# ssh-keygen
[root@spark02 ~]# ssh-copy-id spark01
[root@spark02 ~]# ssh-copy-id spark02
[root@spark02 ~]# ssh-copy-id spark03
[root@spark03 ~]# ssh-keygen
[root@spark03 ~]# ssh-copy-id spark01
[root@spark03 ~]# ssh-copy-id spark02
[root@spark03 ~]# ssh-copy-id spark03

1.3、安装JDK1.8

这里已安装

[root@spark01 ~]# yum list|grep jdk
Repodata is over 2 weeks old. Install yum-cron? Or run: yum 

makecache fast
jdk1.8.0_91.x86_64                      2000:1.8.0_91-fcs         installed

1.4、配置环境变量

[root@spark01 ~]# export JAVA_HOME=/usr/java/jdk1.8.0_91
[root@spark01 ~]# export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:

$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib:$CLASSPATH
[root@spark01 ~]# export PATH=$JAVA_HOME/bin:$PATH

二、开始安装hadoop

2.1、解压并创建hadoop文件目录

[root@spark01 ~]#tar -xzvf hadoop-2.7.2.tar.gz -C /opt
[root@spark01 ~]#cd /opt/hadoop-2.7.2
[root@spark01 hadoop-2.7.2]#mkdir -p hdfs/user
[root@spark01 hadoop-2.7.2]#mkdir -p hdfs/data
[root@spark01 hadoop-2.7.2]#mkdir tmp/

2.2、修改配置文件

主要是修改以下文件

etc/hadoop/slaves

etc/hadoop/core-site.xml

etc/hadoop/hdfs-site.xml

etc/hadoop/mapred-site.xml

etc/hadoop/yarn-site.xml

2.2.1、修改slaves文件(添加数据节点)

[root@spark01 hadoop-2.7.2]#vi etc/hadoop/slaves
spark02
spark03

2.2.2、修改core-site.xml文件(增加hadoop核心配置,hdfs文件端口是9000)

[root@spark01 hadoop-2.7.2]#vi etc/hadoop/core-site.xml 
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://spark01:9000</value>
</property>
<property>
<name>io.file.buffer.size</name>
<value>131072</value>  #默认64MB,这里改为128MB
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>file:/opt/hadoop-2.7.2/tmp</value>
<description>Abasefor other temporary directories.</description>
</property>
<property>
<name>hadoop.proxyuser.spark.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.spark.groups</name>
<value>*</value>
</property>

</configuration>

2.2.3、

修改hdfs-site.xml 文件(增加hdfs配置信息、namenode、datanode端口和目录位置)

[root@spark01 hadoop-2.7.2]#vi etc/hadoop/hdfs-site.xml
<configuration>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>spark01:9001</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:/opt/hadoop-2.7.2/hdfs/user</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:/opt/hadoop-2.7.2/hdfs/data</value>
</property>
<property>
<name>dfs.replication</name>
<value>2</value>  #复本个数==datanode个数
</property>
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>

</configuration>

2.2.4、修改mapred-site.xml 文件(增加mapreduce配置、使用yarn框架、jobhistory使用地址以及web地址)

[root@spark01 hadoop-2.7.2]#vi etc/hadoop/mapred-site.xml
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>spark01:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>spark01:19888</value>
</property>

</configuration>
[root@spark01 hadoop-2.7.2]# vi etc/hadoop/yarn-site.xml 
<configuration>

<!-- Site specific YARN configuration properties -->

<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-

services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>spark01:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>spark01:8030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>spark01:8035</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>spark01:8033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>spark01:8088</value>
</property>

</configuration>

2.2.5、修改hadoop_env.sh配置文件的JAVA_HOME

[root@spark01 hadoop-2.7.2]# vi etc/hadoop/hadoop-env.sh 
# The java implementation to use.
export JAVA_HOME=/usr/java/jdk1.8.0_91

2.3、将配置好的hadoop文件copy到其他的所有的slave机器

[root@spark01 ~]# scp -r /opt/hadoop-2.7.2/ spark02:/opt/
[root@spark01 ~]# scp -r /opt/hadoop-2.7.2/ spark03:/opt/

2.4、配置hadoop环境变量

[root@spark01 ~]# export HADOOP_HOME=/opt/hadoop-2.7.2
[root@spark01 ~]# export PATH=$HADOOP_HOME/bin:$PATH
[root@spark02 ~]# export HADOOP_HOME=/opt/hadoop-2.7.2
[root@spark02 ~]# export PATH=$HADOOP_HOME/bin:$PATH
[root@spark03 ~]# export HADOOP_HOME=/opt/hadoop-2.7.2
[root@spark03 ~]# export PATH=$HADOOP_HOME/bin:$PATH

注意:这里配置的是本地的环境变量,在hadoop中不一定会生效。

hadoop的环境变量在:etc/hadoop/hadoop-env.sh

spark的环境变量也一样,当使用spark-submit提交任务到集群,

如果要调用库等,需要在spark中配置环境变量,就是添加环境变量到spark-env.sh文件。

2.5、格式化namenode节点

[root@spark01 hadoop-2.7.2]# ./bin/hdfs namenode -format
17/07/18 09:52:36 INFO namenode.NameNode: STARTUP_MSG: 
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG:   host = spark01/172.16.92.115
STARTUP_MSG:   args = [-format]
STARTUP_MSG:   version = 2.7.2
。。。。。。
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at spark01/172.16.92.115
************************************************************/

2.6、启动hadoop文件系统

[root@spark01 hadoop-2.7.2]# ./sbin/start-dfs.sh
Starting namenodes on [spark01]
spark01: Warning: Permanently added the ECDSA host key for IP 

address ‘172.16.92.115‘ to the list of known hosts.
spark01: starting namenode, logging to /opt/hadoop-2.7.2/logs/hadoop-root-namenode-spark01.out
spark03: starting datanode, logging to /opt/hadoop-2.7.2/logs/hadoop-root-datanode-spark03.out
spark02: starting datanode, logging to /opt/hadoop-2.7.2/logs/hadoop-root-datanode-spark02.out
Starting secondary namenodes [spark01]
spark01: starting secondarynamenode, logging to /opt/hadoop-2.7.2/logs/hadoop-root-secondarynamenode-spark01.out

2.7、查看进程jps

[root@spark01 hadoop-2.7.2]# jps
25954 Jps
25749 SecondaryNameNode
25533 NameNode

2.8、其他命令

2.8.1、关闭文件系统

[root@spark01 ~]#./sbin/stop-dfs.sh

2.8.2、开启或者关闭hadoop所有服务

[root@spark01 ~]#./sbin/start-all.sh
[root@spark01 ~]#./sbin/stop-all.sh

用浏览器输入以下地址查看hadoop集群

http://spark01:50070/

技术分享

技术分享

三、安装Spark2.0.0

已经在3个节点中安装hadoop集群

3.1.1、安装scala

[root@spark01 ~]# tar -zxvf scala-2.10.4.tgz -C /usr/local

3.1.2、配置scala环境变量(spark是用scala开发的)

[root@spark01 ~]# vi /etc/profile
export SCALA_HOME=/usr/local/scala-2.10.4
export PATH=${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${SCALA_HOME}/bin:$PATH
[root@spark01 ~]# source /etc/profile

3.1.3、测试scala运行环境

[root@spark01 ~]# scala
Welcome to Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server 

VM, Java 1.8.0_91).
Type in expressions to have them evaluated.
Type :help for more information.

scala> 9*3
res0: Int = 27

scala> exit

3.2、安装spark 

3.2.1、解压spark包

[root@spark01 ~]# tar -zxvf spark-2.0.0-bin-hadoop2.7.tar -C /usr/local/

3.2.2、配置本地环境变量

[root@spark01 ~]# vi /etc/profile
export SPARK_HOME=/usr/local/spark-2.0.0-bin-hadoop2.7/ 
export PATH=${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${SCALA_HOME}/bin:${SPARK_HOME}/bin:$PATH
[root@spark01 ~]# source /etc/profile

3.2.3、配置Spark环境变量

[root@spark01 ~]# cd $SPARK_HOME/conf
[root@spark01 conf]# cp spark-env.sh.template spark-env.sh
[root@spark01 conf]# vi spark-env.sh
export JAVA_HOME=/usr/java/jdk1.8.0_91
export SCALA_HOME=/usr/local/scala-2.10.4
export SPARK_MASTER_IP=spark01   #Spark集群的主节点的主机名
export SPARK_WORKER_CORES=1   #Spark集群工作节点的cpu核数
export SPARK_WORKER_MEMORY=512M #Spark集群工作节点的可用内存
export HADOOP_CONF_DIR=/opt/hadoop-2.7.2/etc/hadoop

3.2.4、配置工作节点

[root@spark01 conf]# cp slaves.template slaves
[root@spark01 conf]# vi slaves
spark01
spark02
spark03

3.2.5、将配置好的hadoop文件copy到其他的所有的slave机器

[root@spark01 ~]# scp -r /usr/local/spark-2.0.0-bin-hadoop2.7/ spark02:/usr/local/
[root@spark01 ~]# scp -r /usr/local/spark-2.0.0-bin-hadoop2.7/ spark03:/usr/local/

3.2.6、启动Spark

[root@spark01 ~]# cd $SPARK_HOME/sbin
[root@spark01 sbin]# ./start-all.sh
starting org.apache.spark.deploy.master.Master, logging to 

/usr/local/spark-2.0.0-bin-hadoop2.7//logs/spark-root-org.apache.spark.deploy.master.Master-1-spark01.out
localhost: Warning: Permanently added ‘localhost‘ (ECDSA) to the list of known hosts.
spark02: starting org.apache.spark.deploy.worker.Worker, logging 
to /usr/local/spark-2.0.0-bin-hadoop2.7/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-spark02.out
spark01: starting org.apache.spark.deploy.worker.Worker, logging 
to /usr/local/spark-2.0.0-bin-hadoop2.7/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-spark01.out
localhost: starting org.apache.spark.deploy.worker.Worker, 

logging to /usr/local/spark-2.0.0-bin-hadoop2.7/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-spark01.out
spark03: starting org.apache.spark.deploy.worker.Worker, logging 

to /usr/local/spark-2.0.0-bin-hadoop2.7/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-spark03.out

3.2.7、jps查看进程,多了一个Master和Worker进程

[root@spark01 sbin]# jps
25749 SecondaryNameNode
13413 Worker
13719 Jps
13322 Master
13434 Worker
25533 NameNode

查看spark集群

http://spark01:8080/

技术分享

本文出自 “运维笔记” 博客,请务必保留此出处http://quliren.blog.51cto.com/9849266/1948609

hadoop+spark详细的部署过程

标签:hadoop

原文地址:http://quliren.blog.51cto.com/9849266/1948609

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!