标签:htm 移动 currently 返回值 lib init nal otherwise set
Redis的列表对象底层所使用的数据结构其中之一就是list。
Redis的list是一个双端链表,其由3部分构成:链表节点、链表迭代器、链表。这一设计思想和STL的list是一样的,STL的list也是由这三部分组成。需要特别说明的是Redis用C语言实现了list的迭代器,比较巧妙,下面就来分析list源码。
list节点
节点的值为void*类型,从而可以保存不同类型的值,甚至是另一种类型的对象。
// 双端链表的节点 typedef struct listNode { struct listNode *prev; // 指向上一个节点 struct listNode *next; // 指向下一个节点 void *value; // 指向节点的值, void*类型,使得节点可以保存不同类型的值 } listNode;
list迭代器
c语言实现c++中的迭代器;双端链表的迭代器,方便了遍历链表的操作;根据direction,可设置为前向/反向迭代器
typedef struct listIter { listNode *next; // 指向迭代器方向上下一个链表结点 int direction; // AL_START_HEAD=0:从头部往尾部方向移动;AL_START_TAIL=1:往尾部往头部方向移动 } listIter;
其中direction的取值有:
/* Directions for iterators */ // 迭代器方向的宏定义 #define AL_START_HEAD 0 #define AL_START_TAIL 1
list
与一般设计类似,list中有指向头尾节点的指针,以及链表节点数量的计数。不同的是,由于链表节点为void*类型,被设计为可以存储不同类型的数据,甚至是另一种类型的对象,所以添加了与节点相关的3个函数,作用分别是复制、释放、比较节点的值。
// 双端链表 typedef struct list { listNode *head; // 指向链表头节点 listNode *tail; // 指向链表尾节点 void *(*dup)(void *ptr); // 复制链表节点所保存的值 void (*free)(void *ptr); // 释放链表节点所保存的值 int (*match)(void *ptr, void *key); // 节点值比较函数 unsigned long len; // 链表的节点数目 } list;
Redis用宏定义实现了一些复杂度为O(1)的链表操作,以提高list操作的效率。
/* Functions implemented as macros */ // 通过宏来实现一些O(1)时间复杂度的函数 #define listLength(l) ((l)->len) #define listFirst(l) ((l)->head) #define listLast(l) ((l)->tail) #define listPrevNode(n) ((n)->prev) #define listNextNode(n) ((n)->next) #define listNodeValue(n) ((n)->value) #define listSetDupMethod(l,m) ((l)->dup = (m)) #define listSetFreeMethod(l,m) ((l)->free = (m)) #define listSetMatchMethod(l,m) ((l)->match = (m)) #define listGetDupMethod(l) ((l)->dup) #define listGetFree(l) ((l)->free) #define listGetMatchMethod(l) ((l)->match)
list的源码比较好理解,本人对其已经做了详细的注释,就不仔细介绍了,下面附上源码及注释。list相关的文件有两个:adlist.h, adlist.c
adlist.h
#ifndef __ADLIST_H__ #define __ADLIST_H__ /* Node, List, and Iterator are the only data structures used currently. */ // redis的链表为双端链表 // 节点的值为void*类型,从而可以保存不同类型的值 // 结合dup,free,match函数实现链表的多态 // 双端链表的节点 typedef struct listNode { struct listNode *prev; // 指向上一个节点 struct listNode *next; // 指向下一个节点 void *value; // 指向节点的值, void*类型,使得节点可以保存不同类型的值 } listNode; // c语言实现c++中的迭代器!!! // 双端链表的迭代器,方便了遍历链表的操作 // 根据direction,可设置为前向/反向迭代器 typedef struct listIter { listNode *next; // 指向迭代器方向上下一个链表结点 int direction; // AL_START_HEAD=0:从头部往尾部方向移动;AL_START_TAIL=1:往尾部往头部方向移动 } listIter; // 双端链表 typedef struct list { listNode *head; // 指向链表头节点 listNode *tail; // 指向链表尾节点 void *(*dup)(void *ptr); // 复制链表节点所保存的值 void (*free)(void *ptr); // 释放链表节点所保存的值 int (*match)(void *ptr, void *key); // 节点值比较函数 unsigned long len; // 链表的节点数目 } list; /* Functions implemented as macros */ // 通过宏来实现一些O(1)时间复杂度的函数 #define listLength(l) ((l)->len) #define listFirst(l) ((l)->head) #define listLast(l) ((l)->tail) #define listPrevNode(n) ((n)->prev) #define listNextNode(n) ((n)->next) #define listNodeValue(n) ((n)->value) #define listSetDupMethod(l,m) ((l)->dup = (m)) #define listSetFreeMethod(l,m) ((l)->free = (m)) #define listSetMatchMethod(l,m) ((l)->match = (m)) #define listGetDupMethod(l) ((l)->dup) #define listGetFree(l) ((l)->free) #define listGetMatchMethod(l) ((l)->match) /* Prototypes */ // list数据结构相关的函数 // 具体含义见adlist.c list *listCreate(void); void listRelease(list *list); list *listAddNodeHead(list *list, void *value); list *listAddNodeTail(list *list, void *value); list *listInsertNode(list *list, listNode *old_node, void *value, int after); void listDelNode(list *list, listNode *node); listIter *listGetIterator(list *list, int direction); listNode *listNext(listIter *iter); void listReleaseIterator(listIter *iter); list *listDup(list *orig); listNode *listSearchKey(list *list, void *key); listNode *listIndex(list *list, long index); void listRewind(list *list, listIter *li); void listRewindTail(list *list, listIter *li); void listRotate(list *list); /* Directions for iterators */ // 迭代器方向的宏定义 #define AL_START_HEAD 0 #define AL_START_TAIL 1 #endif /* __ADLIST_H__ */
adlist.c
/* adlist.c - A generic doubly linked list implementation */ #include <stdlib.h> #include "adlist.h" #include "zmalloc.h" /* Create a new list. The created list can be freed with * AlFreeList(), but private value of every node need to be freed * by the user before to call AlFreeList(). * * On error, NULL is returned. Otherwise the pointer to the new list. */ // 创建一个链表 // 返回值:list/NULL list *listCreate(void) { struct list *list; if ((list = zmalloc(sizeof(*list))) == NULL) // 为链表分配内存 return NULL; // 初始化链表结构体的成员 list->head = list->tail = NULL; list->len = 0; list->dup = NULL; list->free = NULL; list->match = NULL; return list; // 返回为新链表分配的内存的起始地址 } /* Free the whole list. * * This function can‘t fail. */ // 释放链表及链表节点 void listRelease(list *list) { unsigned long len; listNode *current, *next; current = list->head; len = list->len; while(len--) { next = current->next; if (list->free) list->free(current->value); // 释放链表节点的值 zfree(current); // 释放链表节点 current = next; } zfree(list); // 释放链表 } /* Add a new node to the list, to head, containing the specified ‘value‘ * pointer as value. * * On error, NULL is returned and no operation is performed (i.e. the * list remains unaltered). * On success the ‘list‘ pointer you pass to the function is returned. */ // 从双端链表的头部插入新节点 // 返回值:list/NULL list *listAddNodeHead(list *list, void *value) { listNode *node; if ((node = zmalloc(sizeof(*node))) == NULL) return NULL; node->value = value; if (list->len == 0) { // 原链表为一空链表 list->head = list->tail = node; node->prev = node->next = NULL; } else { // 插入到双端链表的头结点之前 node->prev = NULL; node->next = list->head; list->head->prev = node; list->head = node; } list->len++; return list; } /* Add a new node to the list, to tail, containing the specified ‘value‘ * pointer as value. * * On error, NULL is returned and no operation is performed (i.e. the * list remains unaltered). * On success the ‘list‘ pointer you pass to the function is returned. */ // 从双端链表的尾部插入新节点 // 返回值:list/NULL list *listAddNodeTail(list *list, void *value) { listNode *node; if ((node = zmalloc(sizeof(*node))) == NULL) return NULL; node->value = value; if (list->len == 0) { list->head = list->tail = node; node->prev = node->next = NULL; } else { node->prev = list->tail; node->next = NULL; list->tail->next = node; list->tail = node; } list->len++; return list; } // 在链表list的节点old_node的前或后插入新节点 // after为0,则在old_node之前插入;否则,在old_node之后插入 // 返回值:list/NULL list *listInsertNode(list *list, listNode *old_node, void *value, int after) { listNode *node; if ((node = zmalloc(sizeof(*node))) == NULL) return NULL; node->value = value; if (after) { // old_node之后插入 node->prev = old_node; node->next = old_node->next; if (list->tail == old_node) { list->tail = node; } } else { // old_node之前插入 node->next = old_node; node->prev = old_node->prev; if (list->head == old_node) { list->head = node; } } if (node->prev != NULL) { node->prev->next = node; } if (node->next != NULL) { node->next->prev = node; } list->len++; return list; } /* Remove the specified node from the specified list. * It‘s up to the caller to free the private value of the node. * * This function can‘t fail. */ // 删除链表list中节点node void listDelNode(list *list, listNode *node) { if (node->prev) node->prev->next = node->next; else list->head = node->next; if (node->next) node->next->prev = node->prev; else list->tail = node->prev; if (list->free) list->free(node->value); zfree(node); list->len--; } /* Returns a list iterator ‘iter‘. After the initialization every * call to listNext() will return the next element of the list. * * This function can‘t fail. */ // 返回链表的迭代器 // 返回值:list/NULL listIter *listGetIterator(list *list, int direction) { listIter *iter; if ((iter = zmalloc(sizeof(*iter))) == NULL) return NULL; if (direction == AL_START_HEAD) iter->next = list->head; // 设置为前向迭代器 else iter->next = list->tail; // 设置为反向迭代器 iter->direction = direction; return iter; } /* Release the iterator memory */ // 释放迭代器的内存 void listReleaseIterator(listIter *iter) { zfree(iter); } /* Create an iterator in the list private iterator structure */ // 回绕迭代器到链表头部 void listRewind(list *list, listIter *li) { li->next = list->head; li->direction = AL_START_HEAD; } // 回绕迭代器到链表尾部 void listRewindTail(list *list, listIter *li) { li->next = list->tail; li->direction = AL_START_TAIL; } /* Return the next element of an iterator. * It‘s valid to remove the currently returned element using * listDelNode(), but not to remove other elements. * * The function returns a pointer to the next element of the list, * or NULL if there are no more elements, so the classical usage patter * is: * * iter = listGetIterator(list,<direction>); * while ((node = listNext(iter)) != NULL) { * doSomethingWith(listNodeValue(node)); * } * * */ // 返回迭代器所指向的元素,并将迭代器往其方向上移动一步 // 返回值:指向当前节点的指针/NULL listNode *listNext(listIter *iter) { listNode *current = iter->next; if (current != NULL) { if (iter->direction == AL_START_HEAD) iter->next = current->next; else iter->next = current->prev; } return current; } /* Duplicate the whole list. On out of memory NULL is returned. * On success a copy of the original list is returned. * * The ‘Dup‘ method set with listSetDupMethod() function is used * to copy the node value. Otherwise the same pointer value of * the original node is used as value of the copied node. * * The original list both on success or error is never modified. */ // 复制输入链表 // list*/NULL list *listDup(list *orig) { list *copy; listIter iter; listNode *node; if ((copy = listCreate()) == NULL) // 创建新链表 return NULL; copy->dup = orig->dup; copy->free = orig->free; copy->match = orig->match; listRewind(orig, &iter); // 回绕迭代器到链表头部 while((node = listNext(&iter)) != NULL) { // 遍历原链表,顺序取出节点 void *value; if (copy->dup) { value = copy->dup(node->value); // 通过list.dup函数复制节点值 if (value == NULL) { listRelease(copy); // 出错释放链表 return NULL; } } else value = node->value; if (listAddNodeTail(copy, value) == NULL) { // 从新链表尾部插入值 listRelease(copy); // 出错释放链表 return NULL; } } return copy; } /* Search the list for a node matching a given key. * The match is performed using the ‘match‘ method * set with listSetMatchMethod(). If no ‘match‘ method * is set, the ‘value‘ pointer of every node is directly * compared with the ‘key‘ pointer. * * On success the first matching node pointer is returned * (search starts from head). If no matching node exists * NULL is returned. */ // 返回链表中节点值与key相匹配的节点 // listNode*/NULL listNode *listSearchKey(list *list, void *key) { listIter iter; listNode *node; listRewind(list, &iter); while((node = listNext(&iter)) != NULL) { if (list->match) { if (list->match(node->value, key)) { // 调用list.match函数对节点值进行比较 return node; } } else { if (key == node->value) { return node; } } } return NULL; } /* Return the element at the specified zero-based index * where 0 is the head, 1 is the element next to head * and so on. Negative integers are used in order to count * from the tail, -1 is the last element, -2 the penultimate * and so on. If the index is out of range NULL is returned. */ // 返回给定索引位置的节点 // index=0,返回头结点 // index < 0,则从尾部开始返回,index = -1,返回尾部节点 listNode *listIndex(list *list, long index) { listNode *n; if (index < 0) { index = (-index)-1; n = list->tail; while(index-- && n) n = n->prev; } else { n = list->head; while(index-- && n) n = n->next; } return n; } /* Rotate the list removing the tail node and inserting it to the head. */ // 将尾部节点弹出,插入到链表头节点之前,成为新的表头节点 void listRotate(list *list) { listNode *tail = list->tail; if (listLength(list) <= 1) return; /* Detach current tail */ list->tail = tail->prev; list->tail->next = NULL; /* Move it as head */ list->head->prev = tail; tail->prev = NULL; tail->next = list->head; list->head = tail; }
(全文完)
附:Redis系列:http://www.cnblogs.com/zxiner/p/7197415.html
标签:htm 移动 currently 返回值 lib init nal otherwise set
原文地址:http://www.cnblogs.com/zxiner/p/7203094.html