集合论与图论对于小松来说是比数字逻辑轻松,比数据结构难的一门专业必修课。虽然小松在高中的时候已经自学过了离散数学中的图论,组合,群论等知识。但对于集合论,小松还是比较陌生的。集合论的好多东西也涉及到了图论的知识。
在第四讲的学习中,小松学到了“有序对”这么一个概念,即用<x, y>表示有序对x和y。要注意的是有序对<x, y>不等于有序对<y, x>。对于一个有序对集合R={<x,y>, <y, z>, <x, z>,……},我们说R是传递的,当且仅当他满足下面的性质:
红色字体用直观的语言描述是:如果存在<x, y>∈R,<y, z>∈R,那么一定存在<x, z>∈R。
这里集合R可以对应到一个有向图G,有序对<x ,y>对应到了G中的一条有向边。 你现在的任务是,对于任意给定的一个简单有向图G(同一有向边不出现两次),判断G是否具有传递性。