标签:style os io strong ar for div sp amp
Given n integers you cangenerate 2n-1 non-empty subsets from them. Determine for howmany of these subsets the product of all the integers in that is a perfectsquare. For example for the set {4,6,10,15} there are3 such subsets. {4}, {6,10,15} and {4,6,10,15}. Aperfect square is an integer whose square root is an integer. For example 1, 4,9, 16,…. .
Input contains multiple testcases. First line of the input contains T(1≤T≤30)the number of test cases. Each test case consists of 2 lines. First line containsn(1≤n≤100) and second linecontains n space separated integers. All these integers are between 1 and 10^15. None of these integers is divisible by aprime greater than 500.
For each test caseoutput is a single line containing one integer denoting the number of non-emptysubsets whose integer product is a perfect square. The input will be such thatthe result will always fit into signed 64 bit integer.
4 3 2 3 5 3 6 10 15 4 4 6 10 15 3 2 2 2 |
0 1 3 3 |
Problemsetter: Abdullah al Mahmud
SpecialThanks to: Manzurur RahmanKhan
题意:给出n个正整数,从中选出1个或者多个,使得选出来的整数乘积是完全平方数,一共有多少种选法。
思路:用01向量表示一个数,再用n个01向量来表示我们的选择,因为完全平方数要求素因子的次数一定要是偶数的,所以我们可以统计的将奇数当作1,偶数当作0,那么就是一组可以变换成oxr的方程组,最后的结果有自由变量f个,答案是2^f-1,f求解就是求n-方程组的秩
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #include <vector> typedef long long ll; using namespace std; const int maxn = 510; typedef int Matrix[maxn][maxn]; int prime[maxn], vis[maxn]; Matrix A; int gen_primes(int m) { memset(vis, 0, sizeof(vis)); int cnt = 0; for (int i = 2; i < m; i++) { if (!vis[i]) { prime[cnt++] = i; for (int j = i * i; j < m; j += i) vis[j] = 1; } } return cnt; } int rank(Matrix A, int m, int n) { int i = 0, j = 0, k , r, u; while (i < m && j < n) { r = i; for (k = i; k < m; k++) if (A[k][j]) { r = k; break; } if (A[r][j]) { if (r != i) for (k = 0; k <= n; k++) swap(A[r][k], A[i][k]); for (u = i+1; u < m; u++) if (A[u][j]) for (k = i; k <= n; k++) A[u][k] ^= A[i][k]; i++; } j++; } return i; } int main() { int m = gen_primes(505); int t; scanf("%d", &t); while (t--) { int n, maxp = 0;; ll x; scanf("%d", &n); memset(A, 0, sizeof(A)); for (int i = 0; i < n; i++) { scanf("%lld", &x); for (int j = 0; j < m; j++) while (x % prime[j] == 0) { maxp = max(maxp, j); x /= prime[j]; A[j][i] ^= 1; } } int r = rank(A, maxp+1, n); printf("%lld\n", (1ll << (n-r)) - 1); } return 0; }
标签:style os io strong ar for div sp amp
原文地址:http://blog.csdn.net/u011345136/article/details/39007141