标签:pop each rip 线性 end text == 回归 输入
Logistic Regression
H(theta)=g(z)
当中g(z),是一个叫做Logistic Function的函数。g(z)函数定义例如以下:
相应图像例如以下:
这是一个值域为0~1的s型函数,在理解中能够觉得:
落在曲线上的随意一点A
A的横坐标相应的纵坐标值是z參数,或者说z对象属于“1”的概率。
在Logistic Regression中
一个线性或非线性函数的向量化表示
这个函数相应的图像被称作决策边界
两种决策边界的样例:
线性:
非线性:
为了方便,下面我们仅仅讨论线性边界的情况
线性边界的表示为
X’*theta
所以Logistic Regression Hypothesis 定义例如以下:
如上所说,Hypothesis定义了结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:
以上是Logistic Regression Hypothesis 的理解
Cost 的主要功能是计算H(theta)和答案Y的差距,在线性回归中这个差距能够用方差解决。可是Logistic问题仅仅有+-两种答案,所以Logistic Regression的Cost函数应该是这种:
整合为一个函数
我们便得到了Logistic Regression的Cost Function。
或使用Matlab 内建miniziae函数
标签:pop each rip 线性 end text == 回归 输入
原文地址:http://www.cnblogs.com/slgkaifa/p/7221584.html