标签:false 叉积 tor ret 不难 str nump 1.0 输入输出
题意不难理解,给出多个多边形,输出多边形间的相交情况(嵌套不算相交),思路也很容易想到。枚举每一个图形再枚举每一条边
恶心在输入输出,不过还好有sscanf(),不懂可以查看cplusplus网站
根据正方形对角的两顶点求另外两个顶点公式:
x2 = (x1+x3-y3+y1)/2; y2 = (x3-x1+y1+y3)/2;
x4= (x1+x3+y3-y1)/2; y4 = (-x3+x1+y1+y3)/2;
还有很多细节要处理
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <map> using namespace std; const double eps = 1e-8; const double PI = acos(-1.0); int sgn(double x) { if(fabs(x) < eps) return 0; return x < 0 ? -1:1; } struct Point { double x,y; Point() {} Point(double _x,double _y) { x = _x,y = _y; } Point operator -(const Point &b)const { return Point(x - b.x,y - b.y); } //叉积 double operator ^(const Point &b)const { return x*b.y - y*b.x; } //点积 double operator *(const Point &b)const { return x*b.x + y*b.y; } }; struct Line { Point p,q; Line() {}; Line(Point _p,Point _q) { p = _p,q = _q; } }; //*判断线段相交 bool inter(Line l1,Line l2) { return max(l1.p.x,l1.q.x) >= min(l2.p.x,l2.q.x) && max(l2.p.x,l2.q.x) >= min(l1.p.x,l1.q.x) && max(l1.p.y,l1.q.y) >= min(l2.p.y,l2.q.y) && max(l2.p.y,l2.q.y) >= min(l1.p.y,l1.q.y) && sgn((l2.p-l1.q)^(l1.p-l1.q))*sgn((l2.q-l1.q)^(l1.p-l1.q)) <= 0 && sgn((l1.p-l2.q)^(l2.p-l2.q))*sgn((l1.q-l2.q)^(l2.p-l2.q)) <= 0; } const int maxn=30; struct Shape { char id; int nump; Point p[maxn]; } shp[maxn]; bool cmp(Shape a,Shape b) { return a.id<b.id; } char str[20]; int num[maxn]; char inters[maxn][maxn]; map<string,int>mp; int main() { // freopen("in.txt","r",stdin); mp["square"]=2; mp["line"]=2; mp["triangle"]=3; mp["rectangle"]=3; int cnt=0; while(scanf("%s",str)) { if(strcmp(str,".")==0) break; if(strcmp(str,"-")!=0) { shp[cnt].id=str[0]; char str_sh[20]; scanf("%s",str_sh); int n; if(mp.count(str_sh)) n=mp[str_sh]; else scanf("%d",&n); shp[cnt].nump=0; for(int i=0; i<n; i++) { scanf("%s",str); int x,y; sscanf(str,"%*c%d%*c%d",&x,&y); shp[cnt].p[shp[cnt].nump++]=Point(x,y); } if(strcmp(str_sh,"rectangle")==0) { Point p1=shp[cnt].p[0]; Point p2=shp[cnt].p[1]; Point p3=shp[cnt].p[2]; shp[cnt].p[shp[cnt].nump++]=Point(p1.x+p3.x-p2.x,p1.y+p3.y-p2.y); } if(strcmp(str_sh,"square")==0) { Point p1=shp[cnt].p[0]; Point p3=shp[cnt].p[1]; shp[cnt].p[shp[cnt].nump++]=Point((p1.x+p3.x-p3.y+p1.y)/2,(p3.x-p1.x+p1.y+p3.y)/2); shp[cnt].p[shp[cnt].nump++]=Point((p1.x+p3.x+p3.y-p1.y)/2,(-p3.x+p1.x+p1.y+p3.y)/2); swap(shp[cnt].p[1],shp[cnt].p[2]); } cnt++; continue; } sort(shp,shp+cnt,cmp); memset(num,0,sizeof(num)); for(int i=0; i<cnt; i++) { for(int j=i+1; j<cnt; j++) { bool flag=false; int num1=shp[i].nump; int num2=shp[j].nump; for(int k1=0; k1<num1 && !flag; k1++) { for(int k2=0; k2<num2 && !flag; k2++) { if(inter(Line(shp[i].p[k1],shp[i].p[(k1+1)%num1]),Line(shp[j].p[k2],shp[j].p[(k2+1)%num2]))) { inters[i][num[i]++]=shp[j].id; inters[j][num[j]++]=shp[i].id; flag=true; } } } } } for(int i=0; i<cnt; i++) { printf("%c ",shp[i].id); if(num[i]==0) printf("has no intersections\n"); else if(num[i]==1) printf("intersects with %c\n",inters[i][0]); else if(num[i]==2) printf("intersects with %c and %c\n",inters[i][0],inters[i][1]); else { printf("intersects with "); for(int j=0;j<num[i]-1;j++) printf("%c, ",inters[i][j]); printf("and %c\n",inters[i][num[i]-1]); } } cnt=0; puts(""); } return 0; }
POJ 3449 Geometric Shapes 判断多边形相交
标签:false 叉积 tor ret 不难 str nump 1.0 输入输出
原文地址:http://www.cnblogs.com/pach/p/7222307.html