码迷,mamicode.com
首页 > 其他好文 > 详细

94、tensorflow实现语音识别0,1,2,3,4,5,6,7,8,9

时间:2017-07-23 13:41:58      阅读:223      评论:0      收藏:0      [点我收藏+]

标签:color   creat   print   节点   over   1.7   权重   pre   com   

‘‘‘
Created on 2017年7月23日

@author: weizhen
‘‘‘
#导入库
from __future__ import division,print_function,absolute_import
import tflearn
import speech_data
import tensorflow as tf
#定义参数
#learning rate是在更新权重的时候用,太高可用很快
#但是loss大,太低较准但是很慢
learning_rate=0.0001
training_iters=300000#STEPS
batch_size=64

width=20 #mfcc features
height=80 #(max) length of utterance
classes = 10  #digits

#用speech_data.mfcc_batch_generator获取语音数据并处理成批次,
#然后创建training和testing数据
batch=word_batch=speech_data.mfcc_batch_generator(batch_size)
X,Y=next(batch)
trainX,trainY=X,Y
testX,testY=X,Y #overfit for now

#4.建立模型
#speech recognition 是个many to many的问题
#所以用Recurrent NN
#通常的RNN,它的输出结果是受整个网络的影响的
#而LSTM比RNN好的地方是,它能记住并且控制影响的点,
#所以这里我们用LSTM
#每一层到底需要多少个神经元是没有规定的,太少了的话预测效果不好
#太多了会overfitting,这里普遍取128
#为了减轻过拟合的影响,我们用dropout,它可以随机地关闭一些神经元,
#这样网络就被迫选择其他路径,进而生成想对generalized模型
#接下来建立一个fully connected的层
#它可以使前一层的所有节点都连接过来,输出10类
#因为数字是0-9,激活函数用softmax,它可以把数字变换成概率
#最后用个regression层来输出唯一的类别,用adam优化器来使
#cross entropy损失达到最小

#Network building
net=tflearn.input_data([None,width,height])
net=tflearn.lstm(net,128,dropout=0.8)
net=tflearn.fully_connected(net,classes,activation=softmax)
net=tflearn.regression(net,optimizer=adam,learning_rate=learning_rate,loss=categorical_crossentropy)


#5.训练模型并预测
#然后用tflearn.DNN函数来初始化一下模型,接下来就可以训练并预测,最好再保存训练好的模型
#Traing
### add this "fix" for tensorflow version erros
col=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
for x in col:
    tf.add_to_collection(tf.GraphKeys.VARIABLES,x)

model=tflearn.DNN(net,tensorboard_verbose=0)

while 1:  #training_iters
    model.fit(trainX, trainY, n_epoch=10, validation_set=(testX,testY), show_metric=True, batch_size=batch_size)
    _y=model.predict(X)
model.save("tflearn.lstm.model")
print(_y)

下面是训练的结果

Training Step: 3097  | total loss: 1.51596 | time: 1.059s

| Adam | epoch: 3097 | loss: 1.51596 - acc: 0.6324 | val_loss: 0.36655 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3098  | total loss: 1.64602 | time: 1.050s

| Adam | epoch: 3098 | loss: 1.64602 - acc: 0.5801 | val_loss: 0.36642 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3099  | total loss: 1.54328 | time: 1.052s

| Adam | epoch: 3099 | loss: 1.54328 - acc: 0.6206 | val_loss: 0.36673 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3100  | total loss: 1.65763 | time: 1.044s

| Adam | epoch: 3100 | loss: 1.65763 - acc: 0.5741 | val_loss: 0.36645 - val_acc: 1.0000 -- iter: 64/64
--
---------------------------------
Run id: E1W1VX
Log directory: /tmp/tflearn_logs/
---------------------------------
Training samples: 64
Validation samples: 64
--
Training Step: 3101  | total loss: 1.56009 | time: 1.328s

| Adam | epoch: 3101 | loss: 1.56009 - acc: 0.6167 | val_loss: 0.36696 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3102  | total loss: 1.68916 | time: 1.034s

| Adam | epoch: 3102 | loss: 1.68916 - acc: 0.5660 | val_loss: 0.36689 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3103  | total loss: 1.58796 | time: 1.044s

| Adam | epoch: 3103 | loss: 1.58796 - acc: 0.6078 | val_loss: 0.36627 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3104  | total loss: 1.49236 | time: 1.055s

| Adam | epoch: 3104 | loss: 1.49236 - acc: 0.6470 | val_loss: 0.36599 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3105  | total loss: 1.60916 | time: 1.028s

| Adam | epoch: 3105 | loss: 1.60916 - acc: 0.5995 | val_loss: 0.36535 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3106  | total loss: 1.51083 | time: 1.049s

| Adam | epoch: 3106 | loss: 1.51083 - acc: 0.6396 | val_loss: 0.36534 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3107  | total loss: 1.63413 | time: 1.066s

| Adam | epoch: 3107 | loss: 1.63413 - acc: 0.5865 | val_loss: 0.36566 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3108  | total loss: 1.74167 | time: 1.042s

| Adam | epoch: 3108 | loss: 1.74167 - acc: 0.5373 | val_loss: 0.36556 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3109  | total loss: 1.63324 | time: 1.051s

| Adam | epoch: 3109 | loss: 1.63324 - acc: 0.5835 | val_loss: 0.36557 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3110  | total loss: 1.75479 | time: 1.042s

| Adam | epoch: 3110 | loss: 1.75479 - acc: 0.5377 | val_loss: 0.36524 - val_acc: 1.0000 -- iter: 64/64
--
---------------------------------
Run id: 93CFSE
Log directory: /tmp/tflearn_logs/
---------------------------------
Training samples: 64
Validation samples: 64
--
Training Step: 3111  | total loss: 1.64290 | time: 1.320s

| Adam | epoch: 3111 | loss: 1.64290 - acc: 0.5839 | val_loss: 0.36560 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3112  | total loss: 1.76515 | time: 1.029s

| Adam | epoch: 3112 | loss: 1.76515 - acc: 0.5349 | val_loss: 0.36552 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3113  | total loss: 1.65166 | time: 1.050s

| Adam | epoch: 3113 | loss: 1.65166 - acc: 0.5814 | val_loss: 0.36609 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3114  | total loss: 1.76346 | time: 1.062s

| Adam | epoch: 3114 | loss: 1.76346 - acc: 0.5342 | val_loss: 0.36636 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3115  | total loss: 1.65255 | time: 1.042s

| Adam | epoch: 3115 | loss: 1.65255 - acc: 0.5808 | val_loss: 0.36636 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3116  | total loss: 1.55663 | time: 1.042s

| Adam | epoch: 3116 | loss: 1.55663 - acc: 0.6227 | val_loss: 0.36689 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3117  | total loss: 1.67928 | time: 1.051s

| Adam | epoch: 3117 | loss: 1.67928 - acc: 0.5729 | val_loss: 0.36726 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3118  | total loss: 1.78375 | time: 1.043s

| Adam | epoch: 3118 | loss: 1.78375 - acc: 0.5266 | val_loss: 0.36714 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3119  | total loss: 1.67364 | time: 1.041s

| Adam | epoch: 3119 | loss: 1.67364 - acc: 0.5724 | val_loss: 0.36725 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3120  | total loss: 1.79457 | time: 1.044s

| Adam | epoch: 3120 | loss: 1.79457 - acc: 0.5276 | val_loss: 0.36694 - val_acc: 1.0000 -- iter: 64/64
--
---------------------------------
Run id: YE812Z
Log directory: /tmp/tflearn_logs/
---------------------------------
Training samples: 64
Validation samples: 64
--
Training Step: 3121  | total loss: 1.68830 | time: 1.351s

| Adam | epoch: 3121 | loss: 1.68830 - acc: 0.5686 | val_loss: 0.36691 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3122  | total loss: 1.79857 | time: 1.022s

| Adam | epoch: 3122 | loss: 1.79857 - acc: 0.5227 | val_loss: 0.36642 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3123  | total loss: 1.68557 | time: 1.071s

| Adam | epoch: 3123 | loss: 1.68557 - acc: 0.5673 | val_loss: 0.36519 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3124  | total loss: 1.58528 | time: 1.042s

| Adam | epoch: 3124 | loss: 1.58528 - acc: 0.6106 | val_loss: 0.36366 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3125  | total loss: 1.49228 | time: 1.042s

| Adam | epoch: 3125 | loss: 1.49228 - acc: 0.6495 | val_loss: 0.36180 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3126  | total loss: 1.41012 | time: 1.052s

| Adam | epoch: 3126 | loss: 1.41012 - acc: 0.6846 | val_loss: 0.36061 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3127  | total loss: 1.55866 | time: 1.023s

| Adam | epoch: 3127 | loss: 1.55866 - acc: 0.6286 | val_loss: 0.35908 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3128  | total loss: 1.46943 | time: 1.044s

| Adam | epoch: 3128 | loss: 1.46943 - acc: 0.6657 | val_loss: 0.35735 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3129  | total loss: 1.39050 | time: 1.042s

| Adam | epoch: 3129 | loss: 1.39050 - acc: 0.6992 | val_loss: 0.35632 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3130  | total loss: 1.54006 | time: 1.043s

| Adam | epoch: 3130 | loss: 1.54006 - acc: 0.6371 | val_loss: 0.35513 - val_acc: 1.0000 -- iter: 64/64
--
---------------------------------
Run id: YGRXY5
Log directory: /tmp/tflearn_logs/
---------------------------------
Training samples: 64
Validation samples: 64
--
Training Step: 3131  | total loss: 1.45402 | time: 1.336s

| Adam | epoch: 3131 | loss: 1.45402 - acc: 0.6702 | val_loss: 0.35442 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3132  | total loss: 1.59202 | time: 1.029s

| Adam | epoch: 3132 | loss: 1.59202 - acc: 0.6110 | val_loss: 0.35325 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3133  | total loss: 1.50035 | time: 1.070s

| Adam | epoch: 3133 | loss: 1.50035 - acc: 0.6499 | val_loss: 0.35195 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3134  | total loss: 1.41417 | time: 1.042s

| Adam | epoch: 3134 | loss: 1.41417 - acc: 0.6849 | val_loss: 0.35042 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3135  | total loss: 1.34060 | time: 1.037s

| Adam | epoch: 3135 | loss: 1.34060 - acc: 0.7149 | val_loss: 0.34937 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3136  | total loss: 1.47476 | time: 1.039s

| Adam | epoch: 3136 | loss: 1.47476 - acc: 0.6574 | val_loss: 0.34826 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3137  | total loss: 1.38535 | time: 1.053s

| Adam | epoch: 3137 | loss: 1.38535 - acc: 0.6917 | val_loss: 0.34739 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3138  | total loss: 1.51673 | time: 1.063s

| Adam | epoch: 3138 | loss: 1.51673 - acc: 0.6413 | val_loss: 0.34637 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3139  | total loss: 1.42892 | time: 1.042s

| Adam | epoch: 3139 | loss: 1.42892 - acc: 0.6756 | val_loss: 0.34570 - val_acc: 1.0000 -- iter: 64/64
--
Training Step: 3140  | total loss: 1.58217 | time: 1.052s

| Adam | epoch: 3140 | loss: 1.58217 - acc: 0.6112 | val_loss: 0.34494 - val_acc: 1.0000 -- iter: 64/64
--
---------------------------------

这里边有一个死循环,具体怎么回事我也不太清楚。

下边是可视化训练,展示训练的图像

技术分享

94、tensorflow实现语音识别0,1,2,3,4,5,6,7,8,9

标签:color   creat   print   节点   over   1.7   权重   pre   com   

原文地址:http://www.cnblogs.com/weizhen/p/7224168.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!