标签:apply code rtm store led contex else cut logs
1、
17/07/17 15:34:55 ERROR yarn.ApplicationMaster: User class threw exception: java.lang.UnsupportedOperationException: empty collection java.lang.UnsupportedOperationException: empty collection at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$apply$40.apply(RDD.scala:1027) at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$apply$40.apply(RDD.scala:1027) at scala.Option.getOrElse(Option.scala:120) at org.apache.spark.rdd.RDD$$anonfun$reduce$1.apply(RDD.scala:1027) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111) at org.apache.spark.rdd.RDD.withScope(RDD.scala:316) at org.apache.spark.rdd.RDD.reduce(RDD.scala:1007) at sparkoffline.DayCount$.dayCount(DayCount.scala:44) at sparkoffline.Main$.main(Main.scala:35) at sparkoffline.Main.main(Main.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:558) 17/07/17 15:34:55 INFO yarn.ApplicationMaster: Final app status: FAILED, exitCode: 15, (reason: User class threw exception: java.lang.UnsupportedOperationException: empty collection) 17/07/17 15:34:55 INFO spark.SparkContext: Invoking stop() from shutdown hook
spark 从hbase过滤出数据形成RDD,然后再做计算,这个错误大概意思是 从hbase过滤出来的数据为空,也就是一个空的RDD
2、
org.apache.spark.shuffle.MetadataFetchFailedException: Missing an output location for shuffle 12 at org.apache.spark.MapOutputTracker$$anonfun$org$apache$spark$MapOutputTracker$$convertMapStatuses$2.apply(MapOutputTracker.scala:548) at org.apache.spark.MapOutputTracker$$anonfun$org$apache$spark$MapOutputTracker$$convertMapStatuses$2.apply(MapOutputTracker.scala:544) at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:772) at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108) at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:771) at org.apache.spark.MapOutputTracker$.org$apache$spark$MapOutputTracker$$convertMapStatuses(MapOutputTracker.scala:544) at org.apache.spark.MapOutputTracker.getMapSizesByExecutorId(MapOutputTracker.scala:155) at org.apache.spark.shuffle.BlockStoreShuffleReader.read(BlockStoreShuffleReader.scala:47) at org.apache.spark.rdd.ShuffledRDD.compute(ShuffledRDD.scala:98) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) at org.apache.spark.scheduler.Task.run(Task.scala:89) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745)
org.apache.spark.shuffle.MetadataFetchFailedException: Missing an output location for shuffle
解决方案:这种问题一般发生在有大量shuffle操作的时候,task不断的failed,然后又重执行,一直循环下去,直到application失败。一般遇到这种问题提高executor内存即可,同时增加每个executor的cpu,这样不会减少task并行度。
或者改代码,替代shuffle 算子(例如reducebykey 替代groupbykey)
标签:apply code rtm store led contex else cut logs
原文地址:http://www.cnblogs.com/liuwei6/p/7228233.html