码迷,mamicode.com
首页 > 其他好文 > 详细

03、操作RDD(transformation和action案例实战)

时间:2017-07-26 21:46:16      阅读:129      评论:0      收藏:0      [点我收藏+]

标签:统计   document   spark   nal   new   3.1   文件的   lazy   throw   

1、transformation和action介绍

Spark支持两种RDD操作:transformation和action。transformation操作会针对已有的RDD创建一个新的RDD;而action则主要是对RDD进行最后的操作,比如遍历、reduce、保存到文件等,并可以返回结果给Driver程序。
 
例如,map就是一种transformation操作,它用于将已有RDD的每个元素传入一个自定义的函数,并获取一个新的元素,然后将所有的新元素组成一个新的RDD。而reduce就是一种action操作,它用于对RDD中的所有元素进行聚合操作,并获取一个最终的结果,然后返回给Driver程序。
 
transformation的特点就是lazy特性。lazy特性指的是,如果一个spark应用中只定义了transformation操作,那么即使你执行该应用,这些操作也不会执行。也就是说,transformation是不会触发spark程序的执行的,它们只是记录了对RDD所做的操作,但是不会自发的执行。只有当transformation之后,接着执行了一个action操作,那么所有的transformation才会执行。Spark通过这种lazy特性,来进行底层的spark应用执行的优化,避免产生过多中间结果。
 
action操作执行,会触发一个spark job的运行,从而触发这个action之前所有的transformation的执行。这是action的特性。

2、案例:统计文件字数


这里通过一个之前学习过的案例,统计文件字数,来讲解transformation和action。
 
// 这里通过textFile()方法,针对外部文件创建了一个RDD,lines,但是实际上,程序执行到这里为止,spark.txt文件的数据是不会加载到内存中的。lines,只是代表了一个指向spark.txt文件的引用。
val lines = sc.textFile("spark.txt")
 
// 这里对lines RDD进行了map算子,获取了一个转换后的lineLengths RDD。但是这里连数据都没有,当然也不会做任何操作。lineLengths RDD也只是一个概念上的东西而已。
val lineLengths = lines.map(line => line.length)
 
// 之列,执行了一个action操作,reduce。此时就会触发之前所有transformation操作的执行,Spark会将操作拆分成多个task到多个机器上并行执行,每个task会在本地执行map操作,并且进行本地的reduce聚合。最后会进行一个全局的reduce聚合,然后将结果返回给Driver程序。
val totalLength = lineLengths.reduce(_ + _)
 

 3、案例:统计文件每行出现的次数

    3.1、java

package sparkcore.java;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;
/**
 * 统计每行出现的次数,即同一行在文件里出现的次数
 */
public class LineCount {
    public static void main(String[] args) {
        // 创建SparkConf
        SparkConf conf = new SparkConf().setAppName("LineCount").setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);
        // 创建初始RDD,lines,每个元素是一行文本
        JavaRDD<String> lines = sc.textFile("test.txt");
        // 对lines RDD执行mapToPair算子,将每一行映射为(line, 1)的这种key-value对的格式
        // 然后后面才能统计每一行出现的次数
        JavaPairRDD<String, Integer> pairs = lines.mapToPair(
                new PairFunction<String, String, Integer>() {
                    private static final long serialVersionUID = 1L;
                    @Override
                    public Tuple2<String, Integer> call(String tthrows Exception {
                        return new Tuple2<String, Integer>(t, 1);
                    }
                });
        // 对pairs RDD执行reduceByKey算子,统计出每一行出现的总次数
        JavaPairRDD<String, Integer> lineCounts = pairs.reduceByKey(
                new Function2<Integer, Integer, Integer>() {
                    private static final long serialVersionUID = 1L;
                    @Override
                    public Integer call(Integer v1, Integer v2throws Exception {
                        return v1 + v2;
                    }
                });
        // 执行一个action操作,foreach,打印出每一行出现的次数
        lineCounts.foreach(new VoidFunction<Tuple2<String, Integer>>() {
            private static final long serialVersionUID = 1L;
            @Override
            public void call(Tuple2<String, Integer> tthrows Exception {
                System.out.println(t._1 + " : " + t._2);
            }
        });
        // 关闭JavaSparkContext
        sc.close();
    }
}

    3.2、scala

 
package sparkcore.scala
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
object LineCount {
  def main(args: Array[String]) {
    val conf = new SparkConf()
      .setAppName("LineCount")
      .setMaster("local")
    val sc = new SparkContext(conf);
    val lines = sc.textFile("test.txt"1)
    val pairs = lines.map { (_, 1) }
    val lineCounts = pairs.reduceByKey { _ + _ }
    lineCounts.foreach(lineCount => println(lineCount._1 + " : " + lineCount._2 ))
  }
} 


 
 
 
 
 
 
 
 
 
 
 
 
 


















03、操作RDD(transformation和action案例实战)

标签:统计   document   spark   nal   new   3.1   文件的   lazy   throw   

原文地址:http://www.cnblogs.com/jiangzhengjun/p/7241766.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!